1. Balli M., Jandl S., Fournier P., et al. Advanced materials for magnetic cooling: Fundamentals and practical aspects. Applied Physics Reviews, 2017, vol. 4, no. 2, pp. 021305. EDN: YHGPLA
2. Kitanovski A. Energy applications of magnetocaloric materials. Advanced Energy Materials, 2020, vol. 10, no. 10, p. 1903741. EDN: UADDZN
3. Bru¨ck E., Tegus O., Thanh D.T.C., et al. Magnetocaloric refrigeration near room temperature (invited). Journal of Magnetism and Magnetic Materials, 2007, vol. 310, no. 2, part 3, pp. 2793-2799.
4. Scheibel F., Gottschall T., Taubel A., et al. Hysteresis design of magnetocaloric materials - from basic mechanisms to applications. Energy Technology, 2018, vol. 6, no. 8, pp. 1397-1428. EDN: VJHDKY
5. Greco A., Aprea C., Maiorino A., et al. A review of the state of the art of solid-state caloric cooling processes at room-temperature before 2019.International Journal of Refrigeration, 2019, vol. 106, pp. 66-88.
6. Silva D.J., Ventura J., Araujo J.P. Caloric devices: A review on numerical modeling and optimization strategies.International Journal of Energy Research, 2021, vol. 45, no. 13, pp. 18498-18539. EDN: BVUOTZ
7. Liu J., Gottschall T., Skokov K.P., et al. Giant magnetocaloric effect driven by structural transitions. Nature Materials, 2012, vol. 11, no. 7, pp. 620-626. EDN: PGSNAH
8. Lovell E., Bez H.N., Boldrin D.C., et al. The La(Fe,Mn,Si)13Hz magnetic phase transition under pressure. Physica Status Solidi - Rapid Research Letters, 2017, vol. 11, no. 10, p. 1700143.
9. Cohen L.F. Contributions to hysteresis in magnetocaloric materials. Physica Status Solidi B, 2018, vol. 225, p. 1700317.
10. Stern-Taulats E., Castan T., Manosa L., et al. Multicaloric materials and effects. MRS Bulletin, 2018, vol. 43, no. 4, pp. 295-298. EDN: YHFJRJ
11. Jia L., Sun J.R., Wang F.W., et al. Volume dependence of the magnetic coupling in LaFe13-xSix based compounds. Applied Physics Letters, 2008, vol. 92, no. 10, p. 101904. EDN: IJGVXH
12. Basso V. The magnetocaloric effect at the first-order magneto-elastic phase transition. Journal of Physics: Condensed Matter, 2011, vol. 23, no. 22, p. 226004.
13. Basso V., Piazzi M., Bennati C., et al. Hysteresis and phase transition kinetics in magnetocaloric materials. Physica Status Solidi B, 2017, vol. 255, no. 2, p. 1700278.
14. Valiev E.Z. Simulation of the magnetic and magnetocaloric properties of hydrides of the La(Fe0.88Si0.12)13 compound by applying a negative pressure. Physics of the Solid State, 2014, vol. 56, no. 1, pp. 47-50. EDN: SKLVDB
15. aliev E.Z., Kazantsev V.A. Magnetocaloric effect in La(FexSi1?x)13 ferromagnets. Journal of Experimental and Theoretical Physics, 2011, vol. 113, no. 6, pp. 1000-1005. EDN: PEQOXR
16. Van Dijk N.H. Landau model evaluation of the magnetic entropy change in magnetocaloric materials. Journal of Magnetism and Magnetic Materials, 2021, vol. 529, p. 167871.
17. Yamada H., Goto T. Magneto-volume coupling constant in itinerant-electron metamagnets. Journal of Magnetism and Magnetic Materials, 2004, vol. 272-276, pp. 460- 461.
18. Bean C.P., Rodbell D.S. Magnetic disorder as a first-order phase transformation. Physical Review, 1962, vol. 126, no. 1, pp. 104-115.
19. Valiev E.Z. Entropy and magnetocaloric effects in ferromagnets undergoing first- and second-order magnetic phase transitions. Journal of Experimental and Theoretical Physics, 2009, vol. 108, no. 2, pp. 279-285. EDN: LLXGIZ
20. Karpenkov D.Yu., Karpenkov A.Yu., Skokov K.P., et al. Pressure dependence of magnetic properties in La(Fe,Si)13: Multistimulus responsiveness of caloric effects by modeling and experiment. Physical Review Applied, 2020, vol. 13, no.3, p. 034014. EDN: FKIREY
21. Gruner M.E., Keune W., Landers J., et al. Moment-volume coupling in La(Fe1?xSix)13. Physica Status Solidi B, 2018, vol. 255, no. 2, p. 1700465. EDN: YDJXAD
22. Yamada H., Fukamichi K., Goto T. Itinerant-electron metamagnetism and strong pressure dependence of the Curie temperature. Physical Review B, 2001, vol. 65, no. 2, p. 024413.
23. Yako H., Fujieda S., Fujita A., et al. Pressure effect on the Curie temperature of La(Fe0.88Si0.12?yAly)13. Journal of Physics: Conference Series, 2011, vol. 266, no. 1, p. 012023.
24. Giannozzi P., Baroni S., Bonini N., et al. Approximations for Brillouin and its reverse function.COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2016, vol. 35, no. 6, pp. 2095-2099.
25. Zhang H., Wang F., Zhao T., et al. Thermally activated itinerant metamagnetic transition in LaFe11.7Si1.3. Physical Review B, 2004, vol. 70, no. 21, p. 212402.
26. Yako H., Fujieda S., Fujita A., et al. Influence of demagnetization effect on the kinetics of the itinerant-electron metamagnetic transition in magnetic refrigerant La(Fe0.88Si0.12)13. IEEE Transactions on Magnetics, 2011, vol. 47, no. 10, pp. 2482-2485. EDN: YCMGCN
27. Moreno-Ramirez L.M., Blazquez J.S., Radulov I.A., et al.Combined kinetic and Bean - Rodbell approach for describing field-induced transitions in LaFe11.6Si1.4 alloys. Journal of Physics D: Applied Physics, 2021, vol. 54, no. 13, p. 135003. EDN: WGCTSU