В данной работе рассматривается задача многопериодного прогнозирования реализованной волатильности (realized volatility, ) и системного бэк-тестирования торговых стратегий для опционов на торгуемые биржевые фонды (Exchange-Traded Fund, ETF). Цель исследования - построение моделей глубокого обучения для многопериодного прогнозирования волатильности активов, таких как SPY и QQQ, и проверка эффективности прогнозов в рамках бэк-тестирования опционных стратегий. Для прогнозирования было использовано несколько архитектур нейронных сетей: LSTM, GRU, BiLSTM, BiGRU, FNN и NBEATSx, а также базовая эконометрическая модель HAR-RV для сравнения. В исследовании вводится новая функция потерь, квантильный лог-гиперболический косинус, для повышения точности прогнозов на высоких значениях волатильности. Точность моделей оценивалась на основе метрик MSE, MAE, MAPE и скорр., что показало превосходство рекуррентных архитектур. С целью апробации в условиях различных рыночных сценариев полученные прогнозы реализованной волатильности были использованы в бек-тестировании двух опционных стратегий: стрэддл и v-скальпинг.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.