EISSN 2414-3952
Язык: en

Статья: INTERPOLATION WITH MINIMUM VALUE OF L2-NORM OF DIFFERENTIAL OPERATOR (2024)

Читать онлайн

For the class of bounded in l2-norm interpolated data, we consider a problem of interpolation on a finite interval [a, b] ⊂ ℝ with minimal value of the L2-norm of a differential operator applied to interpolants. Interpolation is performed at knots of an arbitrary N-point mesh ΔN: a ≤ x1 < x2 < < xN ≤ b. The extremal function is the interpolating natural -spline for an arbitrary fixed set of interpolated data. For some differential operators with constant real coefficients, it is proved that on the class of bounded in l2-norm interpolated data, the minimal value of the L2-norm of the differential operator on the interpolants is represented through the largest eigenvalue of the matrix of a certain quadratic form.

Ключевые фразы: interpolation, natural -spline, DIFFERENTIAL OPERATOR, reproducing kernel, quadratic form
Автор (ы): Новиков Сергей Игоревич
Журнал: URAL MATHEMATICAL JOURNAL

Предпросмотр статьи

Идентификаторы и классификаторы

УДК
51. Математика
Для цитирования:
НОВИКОВ С. И. INTERPOLATION WITH MINIMUM VALUE OF L2-NORM OF DIFFERENTIAL OPERATOR // URAL MATHEMATICAL JOURNAL. 2024. Т. 10 № 2 (19)
Текстовый фрагмент статьи