В статье представлены современные данные о функциях витамина А в организме позвоночных животных в эмбриональном и постнатальном развитии. Основной активной изоформой витамина А в организме является ретиноевая кислота, функционирующая при развитии зародыша в качестве морфогена. В работе представлены сведения, касающиеся участия ретиноевой кислоты в развитии переднего и заднего мозга, сомитогенезе и дифференцировке нервной трубки, жаберных дуг и производных эмбрионального кишечника (легких, поджелудочной железы), а также почки конечности. Кроме того, в статье представлены сведения об участии ретиноидов в метаболизме различных тканей и органов в постнатальном онтогенезе.
This paper presents current knowledge about functions of vitamin A in organisms of vertebrate animals in embryogenesis and postnatal development. Main active isoform of vitamin A is retinoic acid, acts as morphogen in embryo development. This paper presents data about retinoid acid role in forebrain and hindbrain development, somitogenesis and neural tube differentiation, and formation of branchial arch and embrio gut derivatives (lungs and pancreas). Also there are data about retinoids function in metabolism of different tissues and organs in postnatal development.
Идентификаторы и классификаторы
В Биологическом энциклопедическом словаре (1986) витамины (от лат. vita - жизнь) определены как «низкомолекулярные органические соединения различной химической природы, выполняющие важнейшие биохимические и физиологические функции в живых организмах». Человек и животные не синтезируют витамины (кроме никотиновой кислоты, уровень синтеза которой все же не обеспечивает полностью потребностей организма), а получают их из растений и микроорганизмов в виде провитаминов. В отличие от других незаменимых факторов питания (аминокислоты, жирные кислоты и др.), витамины не являются материалом для биосинтезов или источниками энергии, однако они необходимы для осуществления практически всех биохимических и физиологических процессов в организме.
Список литературы
- Мэйден М. Участие ретиноевой кислоты в эмбриональном и постэмбриональном развитии // Онтогенез. – 1995. – Т.26, № 3. – С. 419-429.
- Ноздрин В.И., Земсков В.М., Волков Ю.Т. Иммуноморфологические аспекты действия витамина А. – Москва: Изд. ЗАО ФНПП «Ретиноиды», 2004. – С. 12-16.
- Alexa K., Choe S.K., Hirsch N., Etheridge L., Laver E., Sagerstrom C.G. Maternal and zygotic aldh1a2 activity is required for pancreas development in zebrafish. PLoS ONE, 2009, vol. 4, e8261, pp. 1-11.
- Amengual J., Ribot J., Luisa M., Palou A. Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice. Obesity, 2008, vol. 16, no. 3, pp. 585–591.
- Avantaggiato V., Acampora D., Tuorto F., Simeone A. Retinoic acid induces stage-specific repatterning of the rostral central nervous system. Dev. Biol., 1996, vol. 175, рр. 347-357.
- Bayha E., Jorgensen M.C., Serup P., Grapin-Botton A. Retinoic acid signaling organizes endodermal organ specification along the entire anteroposterior axis. PLoS ONE, 2009, vol. 4, e5845, pp. 1-15.
- Blomhoff R., Blomhoff H.K. Overview of retinoid metabolism and function. J Neurobiol, 2006 Jun, vol. 66, no. 7, pp. 606-30.
- Bonet M.L., Ribot J., Palou A. Lipid metabolism in mammalian tissues and its control by retinoic acid. Biochim. BiophyActa s., 2012, vol. 1821, no. 1, pp. 177–189.
- Cabrera-Valladares G., Matschinsky F.M., Wang J., Fernandez- Mejia C. Effect of retinoic acid on glucokinase activity and gene expression in neonatal and adult cultured hepatocytes. Life Sci., 2001, vol. 68, no. 25, pp. 2813–2824.
- Chen F., Cao Y., Qian J. et al. A retinoic aciddependent network in the foregut controls formation of the mouse lung primordium, J. Clin. Invest., 2010, vol. 120, pp. 2040–2048.
- Chen G., Zhang Y., Lu D. et al. Retinoids synergize with insulin to induce hepatic Gck expression. Biochem. J., 2009, vol. 419, no. 3, pp. 645–653.
- Chiang M.Y., Misner D., Kempermann G. et al. An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron, 1998, vol. 21, pp. 1353–1361.
- Cocco S., Diaz G., Stancampiano R. et al. Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience, 2002, vol. 115, pp. 475–482.
- Coombes J.L., Siddiqui K.R., Arancibia-Carcamo C.V. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med., 2007, vol. 204, pp. 1757–1764.
- Cunningham T.J., Chatzi C., Sandell L.L. et al. Rdh10 mutants deficient in limb field retinoic acid signaling exhibit normal limb patterning but display interdigital webbing. Dev. Dyn., 2011, vol. 240, pp. 1142-1150.
- Decaux J.F., Juanes M., Bossard P., Girard J. Effects of triiodothyronine and retinoic acid on glucokinase gene expression in neonatal rat hepatocytes. Mol. Cell. Endocrinol., 1997, vol. 130, no. 1-2, pp. 61–67.
- Denisenko-Nehrbass NI, Mello CV. Molecular targets of disulfiram action on song maturation in zebrafinches. Brain Res Mol Brain Res, 2001, vol. 87, pp. 246–250.
- Desai T.J., Chen F., Lu J. et al. Distinct roles for retinoic acid receptors alpha and beta in early lung morphogenesis. Dev. Biol., 2006, vol. 291, pp. 12-24.
- Diez del Corral R., Olivera-Martinez I., Goriely A. et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron, 2003, vol. 40, pp. 65-79.
- Dupe V., Lumsden, A. Hindbrain patterning involves graded responses to retinoic acid signalling. Development, 2001, vol. 128, pp. 2199-2208.
- Erkan M., Adler G., Apte M.V., Bachem M.G., Buchholz M., Detlefsen S., Esposito I., Friess H., Gress T.M., Habisch H.J., Hwang R.F., Jaster R., Kleeff J., Klöppel G., Kordes C., Logsdon C.D., Masamune A., Michalski C.W., Oh J., Phillips P.A., Pinzani M., Reiser-Erkan C., Tsukamoto H., Wilson J. StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut., 2012 Feb, vol. 61, no. 2, pp. 172-178.
- Erkan M., Weis N., Pan Z., Schwager C., Samkharadze T., Jiang X., Wirkner U., Giese N.A., Ansorge W., Debus J., Huber P.E., Friess H., Abdollahi A., Kleeff J. Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells. Mol Cancer., 2010, vol. 9, p. 88-103.
- Esteban-Pretel G., Marín, M.P., Cabezuelo F., Moreno V., Renau-Piqueras J., Timoneda J., Barber T. Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats. J. Nutr., 2010, vol. 140, no. 4, pp. 792–798.
- Etchamendy N, Enderlin V, Marighetto A, Vouimba RM, Pallet V, Jaffard R, Higueret P. Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J Neurosci, 2001, vol. 21, pp. 6423–6429.
- Gale E., Zile M., Maden M. Hindbrain respecification in the retinoid-deficient quail. Mech. Dev., 1999, vol. 89, pp. 43-54.
- Gibb S., Maroto M., Dale J.K. The segmentation clock mechanism moves up a notch. Trends Cell Biol., 2010, vol. 20, pp. 593-600.
- Gudas L.J. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta., 2012 Jan, vol. 1821, no. 1, pp. 213-21.
- Halilagic A., Zile M.H., Studer M. A novel role for retinoids in patterning the avian forebrain during presomite stages. Development, 2003, vol. 130, pp. 2039-2050.
- Hoechst B., Gamrekelashvili J., Manns M.P. et al. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood, 2011, vol. 117, pp. 6532–6541.
- Kawakami Y., Raya A., Raya R.M. et al. Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature, 2005, vol. 435, pp.165-171.
- Kiecker C., Lumsden A. Compartments and their boundaries in vertebrate brain development. Nat. Rev. Neurosci., 2005, vol. 6, pp. 553-564.
- Kordes C., Sawitza I., Haussinger D. Hepatic and pancreatic stellate cells in focus. Biol. Chem., 2009, vol. 390, pp. 1003–1012.
- Liu L., Gudas L.J., Disruption of the lecithin:retinol acyltransferase gene makes mice more susceptible to vitamin A deficiency, J. Biol. Chem., 2005, vol. 280, pp. 40226–40234.
- Lohnes D., Mark M., Mendelsohn C. et al. Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development, 1994, vol. 120, pp. 2723-2748.
- Lucas P.C., Forman B.M., Samuels H.H., Granner D.K. Specificity of a retinoic acid response element in the phosphoenolpyruvate carboxykinase gene promoter: Consequences of both retinoic acid and thyroid hormone receptor binding. Mol. Cell. Bio., 1991, vol. 11, no. 10, pp. 5164–5170.
- Lucas P.C., O’Brien R.M., Mitchell J.A. et al. A retinoic acid response element is part of a pleiotropic domain in the phosphoenolpyruvate carboxykinase gene. Proc. Natl. Acad. Sci. U.S.A, 1991, vol. 88, no. 6, pp. 2184–2188.
- Marklund M., Sjodal M., Beehler B.C. et al. Retinoic acid signalling specifies intermediate character in the developing telencephalon. Development, 2004, vol. 131, pp. 4323-4332.
- Marshall H., Morrison A., Studer M. et al. Retinoids and Hox genes. FASEB J., 1996, vol. 10, pp. 969-978.
- Martin M., Gallego-Llamas J., Ribes V. et al. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev. Biol., 2005, vol. 284, pp. 399-411.
- Maruya M., Suzuki K., Fujimoto H. et al. Vitamin A-dependent transcriptional activation of the nuclear factor of activated T cells c1 (NFATc1) is critical for the development and survival of B1 cells. Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 722–727.
- Maves L., Kimmel C.B. Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid. Dev. Biol., 2005, vol. 285, pp. 593-605.
- Mic F.A., Molotkov A., Molotkova N., Duester G. Raldh2 expression in optic vesicle generates a retinoic acid signal needed for invagination of retina during optic cup formation. Dev. Dyn., 2004, vol, 231, pp. 270-277.
- Misner DL, Jacobs S, Shimizu Y. et al. Vitamin A deprivation results in reversible loss of hippocampal longterm synaptic plasticity. Proc Natl Acad Sci USA, 2001, vol. 98, pp. 11714–11719.
- Molotkova N., Molotkov A., Sirbu I.O., Duester G. Requirement of mesodermal retinoic acid generated by Raldh2 for posterior neural transformation. Mech. Dev., 2005, vol. 122, pp. 145-155.
- Morriss G. M. Morphogenesis of the malformations induced in rat embryos by maternal hypervitaminosis A. J. Anat., 1972, vol. 113, pp. 241-250.
- Niederreither K., Subbarayan V., Dollé P., Chambon P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet., 1999, vol. 21, pp. 444-448.
- Niederreither K., Vermot J., Le Roux I. et al. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development, 2003, vol. 130, pp. 2525-2534.
- Novitch B.G., Wichterle H., Jessell T.M., Sockanathan S. A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron, 2003, vol. 40, pp. 81-95.
- O’Byrne S.M., Wongsiriroj N., Libien J. et al. Retinoid absorption and storage is impaired in mice lacking lecithin:retinol acyltransferase (LRAT), J. Biol. Chem., 2005, vol. 280, pp. 35647–35657.
- Ohoka Y., Yokota A., Takeuchi H. et al. Retinoic acid-induced CCR9 expression requires transient TCR stimulation and cooperativity between NFATc2 and the retinoic acid receptor/retinoid X receptor complex. J. Immunol., 2011, vol. 186, pp. 733–744.
- Ostrom M., Loffler K.A., Edfalk S. et al. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells. PLoS ONE, 2008, vol. 3, e2841.
- Pan J., Baker K.M. Retinoic acid and the heart. In Vitamins and hormones: Vitamin A. Academic Press, New Work, 2007, vol. 75, pp. 257-283.
- Rhinn M, Dollé P. Retinoic acid signalling during development. Development, 2012 Mar, vol. 139, no. 5, pp. 843-858.
- Ribes V., Le Roux I., Rhinn M. et al. Early mouse caudal development relies on crosstalk between retinoic acid, Shh and Fgf signalling pathways. Development, 2009, vol. 136, pp. 665-676.
- Rijli F.M., Gavalas A. Chambon P. Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int. J. Dev. Biol., 1998, vol. 42, pp. 393-401.
- Sandell L.L., Sanderson B.W., Moiseyev G. et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev., 2007, vol. 21, pp. 1113-1124.
- Schneider R.A., Hu D., Rubenstein J.L., Maden M., Helms J.A. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development, 2001, vol. 128, pp. 2755-2767.
- Seaberg R.M., Smukler S.R., Kieffer T.J. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol., 2004 Sep, vol. 22, no. 9, pp. 1115-1124.
- Senoo H., Kojima N., Sato M. Vitamin A-storing cells (stellate cells). Vitam Horm., 2007, vol. 75, pp. 131-159.
- Shin D.J., Tao A.Y., Mcgrane M.M. Effects of vitamin A deficiency and retinoic acid treatment on expression of a phosphoenolpyruvate carboxykinase-bovine growth hormone gene in transgenic mice. Biochem. Biophys. Res. Commun., 1995, vol. 213, no. 2, pp. 706–714.
- Sirbu I.O., Duester G. Retinoic-acid signalling in node ectoderm and posterior neural plate directs left-right patterning of somitic mesoderm. Nat. Cell Biol., 2006, vol. 8, pp. 271-277.
- Thaller C., Eichele G. Identification and spatial distribution of retinoids in the developing chick limb bud. Nature, 1987, vol. 327, pp. 625-628.
- Vega V.A., Anzulovich A.C., Varas S.M. et al. Effect of nutritional vitamin A deficiency on lipid metabolism in the rat heart: Its relation to PPAR gene expression. Nutrition, 2007, vol. 25, no. 7-8, pp. 828-838.
- Vergara MN, Arsenijevic Y, Rio-Tsonis K. CNS regeneration: A morphogen’s tale. J Neurobiol, 2005, vol. 64, pp. 491–507.
- Vermot J., Pourquie O. Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nature, 2005, vol. 435, pp. 215-220.
- Wang Z., Dolle P., Cardoso W.V., Niederreither K. Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives. Dev. Biol., 2006, vol. 297, pp. 433-445.
- Vermot J., Niederreither K., Garnier J.M. et al. Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 1763-1768.
- Wang Z., Dolle P., Cardoso W.V., Niederreither K. Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives. Dev. Biol., 2006, vol. 297, pp. 433-445.
- Wendling O., Dennefeld C., Chambon P., Mark M. Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development, 2000, vol. 127, pp. 1553-1562.
- Wilson L., Gale E., Chambers D., Maden M. Retinoic acid and the control of dorsoventral patterning in the avian spinal cord. Dev. Biol., 2004, vol. 269, pp. 433-446.
- Zhao S., Li R., Li Y. et al. Roles of vitamin A status and retinoids in glucose and fatty acid metabolism. Biochem Cell Biol., 2012 Apr, vol. 90, no. 2, pp. 142-152.
- Zhao X., Sirbu I.O., Mic F.A. et al. Retinoic acid promotes limb induction through effects on body axis extension but is unnecessary for limb patterning. Curr. Biol., 2009, vol. 19, pp. 1050-1057.
- Meyden M. Uchastie retinoevoy kisloty v embrionalnom i postembrionalnom razvitii [перевод на англ.].Ontogenez, 1995, vol. 26, no. 3, pp. 419-429.
- Nozdrin V.I., Zemskov V.M., Volkov Yu.T. Immunomorfologicheskie aspekty deystviya vitamina A [перевод на англ.]. Moscow, Publ. ZAO FNPP «Retinoidy», 2004, pp. 12-16.
- Alexa K., Choe S.K., Hirsch N., Etheridge L., Laver E., Sagerstrom C.G. Maternal and zygotic aldh1a2 activity is required for pancreas development in zebrafish. PLoS ONE, 2009, vol. 4, e8261, pp. 1-11.
- Amengual J., Ribot J., Luisa M., Palou A. Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice. Obesity, 2008, vol. 16, no. 3, pp. 585–591.
- Avantaggiato V., Acampora D., Tuorto F., Simeone A. Retinoic acid induces stage-specific repatterning of the rostral central nervous system. Dev. Biol., 1996, vol. 175, рр. 347-357.
- Bayha E., Jorgensen M.C., Serup P., Grapin-Botton A. Retinoic acid signaling organizes endodermal organ specification along the entire anteroposterior axis. PLoS ONE, 2009, vol. 4, e5845, pp. 1-15.
- Blomhoff R., Blomhoff H.K. Overview of retinoid metabolism and function. J Neurobiol, 2006 Jun, vol. 66, no. 7, pp. 606-30.
- Bonet M.L., Ribot J., Palou A. Lipid metabolism in mammalian tissues and its control by retinoic acid. Biochim. BiophyActa s., 2012, vol. 1821, no. 1, pp. 177–189.
- Cabrera-Valladares G., Matschinsky F.M., Wang J., Fernandez- Mejia C. Effect of retinoic acid on glucokinase activity and gene expression in neonatal and adult cultured hepatocytes. Life Sci., 2001, vol. 68, no. 25, pp. 2813–2824.
- Chen F., Cao Y., Qian J. et al. A retinoic aciddependent network in the foregut controls formation of the mouse lung primordium, J. Clin. Invest., 2010, vol. 120, pp. 2040–2048.
- Chen G., Zhang Y., Lu D. et al. Retinoids synergize with insulin to induce hepatic Gck expression. Biochem. J., 2009, vol. 419, no. 3, pp. 645–653.
- Chiang M.Y., Misner D., Kempermann G. et al. An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron, 1998, vol. 21, pp. 1353–1361.
- Cocco S., Diaz G., Stancampiano R. et al. Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience, 2002, vol. 115, pp. 475–482.
Беспятых, Бурлакова, Голиченков, 2013
СЛОЖНЫЕ СИСТЕМЫ, № 1(6), 2013 23 - Coombes J.L., Siddiqui K.R., Arancibia-Carcamo C.V. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med., 2007, vol. 204, pp. 1757–1764.
- Cunningham T.J., Chatzi C., Sandell L.L. et al. Rdh10 mutants deficient in limb field retinoic acid signaling exhibit normal limb patterning but display interdigital webbing. Dev. Dyn., 2011, vol. 240, pp. 1142-1150.
- Decaux J.F., Juanes M., Bossard P., Girard J. Effects of triiodothyronine and retinoic acid on glucokinase gene expression in neonatal rat hepatocytes. Mol. Cell. Endocrinol., 1997, vol. 130, no. 1-2, pp. 61–67.
- Denisenko-Nehrbass NI, Mello CV. Molecular targets of disulfiram action on song maturation in zebrafinches. Brain Res Mol Brain Res, 2001, vol. 87, pp. 246–250.
- Desai T.J., Chen F., Lu J. et al. Distinct roles for retinoic acid receptors alpha and beta in early lung morphogenesis. Dev. Biol., 2006, vol. 291, pp. 12-24.
- Diez del Corral R., Olivera-Martinez I., Goriely A. et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron, 2003, vol. 40, pp. 65-79.
- Dupe V., Lumsden, A. Hindbrain patterning involves graded responses to retinoic acid signalling. Development, 2001, vol. 128, pp. 2199-2208.
- Erkan M., Adler G., Apte M.V., Bachem M.G., Buchholz M., Detlefsen S., Esposito I., Friess H., Gress T.M., Habisch H.J., Hwang R.F., Jaster R., Kleeff J., Klöppel G., Kordes C., Logsdon C.D., Masamune A., Michalski C.W., Oh J., Phillips P.A., Pinzani M., Reiser-Erkan C., Tsukamoto H., Wilson J. StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut., 2012 Feb, vol. 61, no. 2, pp. 172-178.
- Erkan M., Weis N., Pan Z., Schwager C., Samkharadze T., Jiang X., Wirkner U., Giese N.A., Ansorge W., Debus J., Huber P.E., Friess H., Abdollahi A., Kleeff J. Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells. Mol Cancer., 2010, vol. 9, p. 88-103.
- Esteban-Pretel G., Marín, M.P., Cabezuelo F., Moreno V., Renau-Piqueras J., Timoneda J., Barber T. Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats. J. Nutr., 2010, vol. 140, no. 4, pp. 792–798.
- Etchamendy N, Enderlin V, Marighetto A, Vouimba RM, Pallet V, Jaffard R, Higueret P. Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J Neurosci, 2001, vol. 21, pp. 6423–6429.
- Gale E., Zile M., Maden M. Hindbrain respecification in the retinoid-deficient quail. Mech. Dev., 1999, vol. 89, pp. 43-54.
- Gibb S., Maroto M., Dale J.K. The segmentation clock mechanism moves up a notch. Trends Cell Biol., 2010, vol. 20, pp. 593-600.
- Gudas L.J. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta., 2012 Jan, vol. 1821, no. 1, pp. 213-21.
- Halilagic A., Zile M.H., Studer M. A novel role for retinoids in patterning the avian forebrain during presomite stages. Development, 2003, vol. 130, pp. 2039-2050.
- Hoechst B., Gamrekelashvili J., Manns M.P. et al. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood, 2011, vol. 117, pp. 6532–6541.
- Kawakami Y., Raya A., Raya R.M. et al. Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature, 2005, vol. 435, pp.165-171.
- Kiecker C., Lumsden A. Compartments and their boundaries in vertebrate brain development. Nat. Rev. Neurosci., 2005, vol. 6, pp. 553-564.
- Kordes C., Sawitza I., Haussinger D. Hepatic and pancreatic stellate cells in focus. Biol. Chem., 2009, vol. 390, pp. 1003–1012.
- Liu L., Gudas L.J., Disruption of the lecithin:retinol acyltransferase gene makes mice more susceptible to vitamin A deficiency, J. Biol. Chem., 2005, vol. 280, pp. 40226–40234.
- Lohnes D., Mark M., Mendelsohn C. et al. Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development, 1994, vol. 120, pp. 2723-2748.
- Lucas P.C., Forman B.M., Samuels H.H., Granner D.K. Specificity of a retinoic acid response element in the phosphoenolpyruvate carboxykinase gene promoter: Consequences of both retinoic acid and thyroid hormone receptor binding. Mol. Cell. Bio., 1991, vol. 11, no. 10, pp. 5164–5170.
- Lucas P.C., O’Brien R.M., Mitchell J.A. et al. A retinoic acid response element is part of a pleiotropic domain in the phosphoenolpyruvate carboxykinase gene. Proc. Natl. Acad. Sci. U.S.A, 1991, vol. 88, no. 6, pp. 2184–2188.
- Marklund M., Sjodal M., Beehler B.C. et al. Retinoic acid signalling specifies intermediate character in the developing telencephalon. Development, 2004, vol. 131, pp. 4323-4332.
- Marshall H., Morrison A., Studer M. et al. Retinoids and Hox genes. FASEB J., 1996, vol. 10, pp. 969-978.
- Martin M., Gallego-Llamas J., Ribes V. et al. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev. Biol., 2005, vol. 284, pp. 399-411.
- Maruya M., Suzuki K., Fujimoto H. et al. Vitamin A-dependent transcriptional activation of the nuclear factor of activated T cells c1 (NFATc1) is critical for the development and survival of B1 cells, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 722–727.
- Maves L., Kimmel C.B. Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid. Dev. Biol., 2005, vol. 285, pp. 593-605.
- Mic F.A., Molotkov A., Molotkova N., Duester G. Raldh2 expression in optic vesicle generates a retinoic acid signal needed for invagination of retina during optic cup formation. Dev. Dyn., 2004, vol, 231, pp. 270-277.
- Misner DL, Jacobs S, Shimizu Y. et al. Vitamin A deprivation results in reversible loss of hippocampal longterm synaptic plasticity. Proc Natl Acad Sci USA, 2001, vol. 98, pp. 11714–11719.
- Molotkova N., Molotkov A., Sirbu I.O. and Duester G. Requirement of mesodermal retinoic acid generated by Raldh2 for posterior neural transformation. Mech. Dev., 2005, vol. 122, pp. 145-155.
- Morriss G. M. Morphogenesis of the malformations induced in rat embryos by maternal hypervitaminosis A. J. Anat., 1972, vol. 113, pp. 241-250.
- Niederreither K., Subbarayan V., Dollé P., Chambon P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet., 1999, vol. 21, pp. 444-448.
- Niederreither K., Vermot J., Le Roux I. et al. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development, 2003, vol. 130, pp. 2525-2534.
- Novitch B.G., Wichterle H., Jessell T.M., Sockanathan S. A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron, 2003, vol. 40, pp. 81-95.
- O’Byrne S.M., Wongsiriroj N., Libien J. et al. Retinoid absorption and storage is impaired in mice lacking lecithin:retinol acyltransferase (LRAT), J. Biol. Chem., 2005, vol. 280, pp. 35647–35657.
- Ohoka Y., Yokota A., Takeuchi H. et al. Retinoic acid-induced CCR9 expression requires transient TCR stimulation and cooperativity between NFATc2 and the retinoic acid receptor/retinoid X receptor complex. J. Immunol., 2011, vol. 186, pp. 733–744.
- Ostrom M., Loffler K.A., Edfalk S. et al. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells. PLoS ONE, 2008, vol. 3, e2841.
- Pan J., Baker K.M. Retinoic acid and the heart. In Vitamins and hormones: Vitamin A. Academic Press, New Work, 2007, vol. 75, pp. 257-283.
- Rhinn M, Dollé P. Retinoic acid signalling during development. Development, 2012 Mar, vol. 139, no. 5, pp. 843-858.
- Ribes V., Le Roux I., Rhinn M. et al. Early mouse caudal development relies on crosstalk between retinoic acid, Shh and Fgf signalling pathways. Development, 2009, vol. 136, pp. 665-676.
- Rijli F.M., Gavalas A. Chambon P. Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int. J. Dev. Biol., 1998, vol. 42, pp. 393-401.
- Sandell L.L., Sanderson B.W., Moiseyev G. et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev., 2007, vol. 21, pp. 1113-1124.
- Schneider R.A., Hu D., Rubenstein J.L., Maden M., Helms J.A. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development, 2001, vol. 128, pp. 2755-2767.
- Seaberg R.M., Smukler S.R., Kieffer T.J. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol., 2004 Sep, vol. 22, no. 9, pp. 1115-1124.
- Senoo H., Kojima N., Sato M. Vitamin A-storing cells (stellate cells). Vitam Horm., 2007, vol. 75, pp. 131-159.
- Shin D.J., Tao A.Y., Mcgrane M.M. Effects of vitamin A deficiency and retinoic acid treatment on expression of a phosphoenolpyruvate carboxykinase-bovine growth hormone gene in transgenic mice. Biochem. Biophys. Res. Commun., 1995, vol. 213, no. 2, pp. 706–714.
- Sirbu I.O., Duester G. Retinoic-acid signalling in node ectoderm and posterior neural plate directs left-right patterning of somitic mesoderm. Nat. Cell Biol., 2006, vol. 8, pp. 271-277.
- Thaller C., Eichele G. Identification and spatial distribution of retinoids in the developing chick limb bud. Nature, 1987, vol. 327, pp. 625-628.
- Vega V.A., Anzulovich A.C., Varas S.M. et al. Effect of nutritional vitamin A deficiency on lipid metabolism in the rat heart: Its relation to PPAR gene expression. Nutrition, 2007, vol. 25, no. 7-8, pp. 828-838.
- Vergara MN, Arsenijevic Y, Rio-Tsonis K. CNS regeneration: A morphogen’s tale. J Neurobiol, 2005, vol. 64, pp. 491–507.
- Vermot J., Pourquie O. Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nature, 2005, vol. 435, pp. 215-220.
- Vermot J., Gallego Llamas J., Fraulob V. et al. Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo. Science, 2005, vol. 308, pp. 563-566.
- Vermot J., Niederreither K., Garnier J.M. et al. Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 1763-1768.
- Wang Z., Dolle P., Cardoso W.V., Niederreither K. Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives. Dev. Biol., 2006, vol. 297, pp. 433-445.
- Wendling O., Dennefeld C., Chambon P., Mark M. Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development, 2000, vol. 127, pp. 1553-1562.
- Wilson L., Gale E., Chambers D., Maden M. Retinoic acid and the control of dorsoventral patterning in the avian spinal cord. Dev. Biol., 2004, vol. 269, pp. 433-446.
- Zhao S., Li R., Li Y. et al. Roles of vitamin A status and retinoids in glucose and fatty acid metabolism. Biochem Cell Biol., 2012 Apr, vol. 90, no. 2, pp. 142-152.
- Zhao X., Sirbu I.O., Mic F.A. et al. Retinoic acid promotes limb induction through effects on body axis extension but is unnecessary for limb patterning. Curr. Biol., 2009, vol. 19, pp. 1050-1057.
Выпуск
Другие статьи выпуска
Рассматривается механизм влияния на биологические объекты следующих типов воздействий: биологически активных веществ в сверхмалых дозах (концентрация вещества 10-13М и ниже), низкоинтенсивного неионизирующего электромагнитного излучения (плотность потока менее 1 мкВт/см2), низкоинтенсивного ионизирующего излучения (эквивалентная доза менее 0,1 Зв), окружающих полостных структур (пчелиные соты, ячеистые структуры и т. п.). Действие сверхмалых доз биологически активных веществ и низкоинтенсивных физических факторов проявляется на разных уровнях биологической организации объекта воздействия: от макромолекул, клеток, органов и тканей до животных и растительных организмов. К числу свойств, характерных для перечисленных выше типов воздействий, относятся: изменение чувствительности биологического объекта к последующим воздействиям сверхмалых доз, зависимость «знака» эффекта от начальных характеристик биологического объекта, немонотонная зависимость «доза-эффект», исчезновение побочных эффектов при уменьшении дозы. В статье проводится аналогия между особенностями действия сверхмалых доз биологически активных веществ и низкоинтенсивных физических факторов на биологические объекты и свойствами сверхтекучих спиновых токов в сверхтекучем 3Не-В.
Настоящая статья посвящена проблеме получения хаотических решений, соответствующих детерминированному хаосу, путём интегрирования на компьютере уравнений с запаздыванием. Полученные цифровые хаотические сигналы обладают рядом специфических свойств. Поэтому их можно использовать в цифровых линиях связи и других системах передачи данных для решения следующих задач: 1) для передачи информации непосредственно; 2) для шифрования или кодирования передаваемой информации; 3) для постановки оптимальных или заградительных помех с целью эффективного противодействия цифровым системам противника различного назначения.
Благодаря лагранжеву формализму, получено неоднородное нелинейное
дифференциальное уравнение в частных производных, описывающее поведение амплитуды
волны от времени и координат. Исходя из предположения, что диссипация энергии волнового
движения происходит благодаря квазиупругому рассеянию волны на колебаниях плотности
жидкости, вычислена глубина турбулентного затухания вглубь акватории, и найдено
аналитическое выражение коэффициента турбулентной вязкости турб . Численная оценка
турб дает значение порядка 4 6 2 1 10 10 ñì ñ , согласующееся с метеорологическими
измерениями, проведенными со спутника.
На примере эмбриогенеза животных исследован биохимический механизм самоорганизации с ведущим участием энергетических (свободнорадикальных) процессов. С позиций экспериментальных данных обсуждаются общие свойства развивающихся систем и параметры порядка в качественных изменениях эмбрионального организма, определяющих смену фаз развития. Обнаруженные квазихаотические периоды в эмбриогенезе использованы в создании тест-системы, позволившей обнаружить ранние биологические эффекты слабых и сверхслабых средовых воздействий и прогнозировать их экологический риск.
Издательство
- Издательство
- ИФСИ
- Регион
- Россия, Москва
- Почтовый адрес
- 140080, Московская область, г. Лыткарино, ул. Парковая, Д. 1, офис 14/А
- Юр. адрес
- 140080, Московская область, г. Лыткарино, ул. Парковая, Д. 1, офис 14/А
- ФИО
- Старцев Вадим Валерьевич (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- systemology@yandex.ru
- Контактный телефон
- +7 (963) 7123301