Рассмотрены особенности моделирования центральной области и динамики пучка ионов водорода для циклотрона Ц-250, предназначенного для работы в широком диапазоне регулирования энергии 30-250 МэВ. На основе моделирования динамики пучка ионов в диапазоне регулирования энергии определена оптимальная конфигурация центральной области ускоряющей системы циклотрона Ц-250. В разработанной центральной области выполняются требования по обеспечению достаточной вертикальной фокусировки частиц электрическим полем при захвате пучка в широком фазовом диапазоне. Отклонение центров орбит частиц от геометрического центра циклотрона составляет 2-3 мм для всего диапазона регулирования магнитного поля циклотрона.
Идентификаторы и классификаторы
- Префикс DOI
- 10.25205/2541-9447-2024-19-2-50-56
- eLIBRARY ID
- 68537558
Разработанная центральная область (рис. 1) циклотрона Ц-250 [1] предназначена для ускорения ионов водорода в широком диапазоне регулирования энергии 30–250 МэВ [2; 3]. Для обеспечения ускорения ионов во всем диапазоне энергий уровень среднего магнитного поля в центральной области должен регулироваться от 0,8 до 1,08 Тл за счет изменения тока основной обмотки. Для формирования изохронного магнитного поля предусмотрены корректирующие обмотки, устанавливаемые как на секторах электромагнита, так и в центральной области [4]. Корректирующие обмотки, располагаемые на секторах, будут иметь возможность изменения первой гармоники магнитного поля для обеспечения оптимального центрирования пучка ионов, а концентрическая обмотка в центре будет обеспечивать создание «бампа» магнитного поля, необходимого для уменьшения потерь в вертикальной плоскости на электродах ускоряющей системы.
Список литературы
1. | Горбунов И. В., Галчук А. В., Осина Ю. К., Стогов Ю. И. Расчет центральной области циклотрона Ц-250 // OPENSCIENCE 2022: Сб. тезисов IX Всероссийского молодежного научного форума. Гатчина, 2023. СПб.: Изд-во Петербург. ин-та ядерной физики им. Б. П. Константинова, 2023. С. 59. | |
---|---|---|
2. | Smirnov K. E., Gavrish Yu. N., Galchuck A. V., Grigorenko S. V., Grigoriev V. I., Klopenkov R. M., Korolev L. E., Kravchuck K. A., Kuzhlev A. N., Mezhov I. I., Mudrolyubov V. G., Osina Yu. K., Stogov Yu. I., Usanova M. V. CYCLOTRON SYSTEM С-250 // RuPAC2021, Alushta, Russia. 27th Russian Particle Acc. Conf. P. 105-107. DOI: 10.18429/JACoW-RuPAC2021-FRA05. | |
3. | Смирнов К. Е., Гавриш Ю. Н., Галчук А. В., Григоренко С. В., Григорьев В. И., Клопенков Р. М., Королёв Л. Е., Кравчук К. А., Кужлев А. Н., Межов И. И., Мудролюбов В. Г., Осина Ю. К., Стогов Ю. И., Усанова М. В. Циклотронный комплекс Ц-250 // Ядерные и электрофизические установки - источники мощных ионизирующих излучений: Сб. тез. докл. науч.-техн. конф. 15-18 июня 2021 г. Снежинск: Изд-во РФЯЦ - ВНИИТФ, 2021. С. 29. | |
4. | Osina Yu. K., Ananyeva O. V., Galchuck A. V., Gorbunov I. V., Grigorenko S. V., Mudrolyubov V. G., Smirnov K. E., Stogov Yu. I. Modeling of Magnetic Field and Dynamics of H-, H+ Ions for the Cyclotron C-250. Phys. Part. Nuclei Lett. 2023. No. 20. P. 846-849. |
Выпуск
Другие статьи выпуска
Описана разработка программы на языке Python для анализа изображений интерференций и формирования графика спектра источника света для практикума по физической оптике. Предусмотрена калибровка преобразования Фурье и определение частотных составляющих в составе света. Строится график видности, оценивается ширина видности. |
---|
В работе рассматриваются экспериментальные результаты по развитию волнового поезда в продольном следе в пограничном слое плоской пластины при числе Маха 2,5. Выполнен анализ пространственно-временных распределений и частотно-волновых спектров пульсаций, а также их волновых характеристик в линейной и слабонелинейной фазе развития волнового поезда в однородном и неоднородном пограничном слое при фиксированной мощности источника контролируемых возмущений. В ходе анализа результатов субгармонический резонанс не наблюдался. Разложение по волновому спектру стационарной неоднородности и экспериментальные данные о волновых характеристиках и спектрах возмущений позволили предложить варианты взаимодействия волн для режима наклонного перехода. |
---|
Рассмотрены вопросы влияния геометрических условий фокусировки лазерного излучения на поверхность плазмообразующей мишени лазерно-плазменного источника ионов. В частности, экспериментально установлено наличие двух максимумов ионной эмиссии в области плотности потока лазерного излучения, превышающего 1015 Вт/м2. Предложена возможная интерпретация этого эффекта.
В статье рассматриваются новые модели ускорителей серии ЭЛВ: ЭЛВ-15 с максимальной энергией до 3 МэВ, ЭЛВ-16 с максимальной энергией до 4 МэВ, ускоритель ЭЛВ-18 с энергией до 2 МэВ, и модификация ускорителя ЭЛВ-4Б. Даны детали процесса проектирования, расчета и тестирования. Рассматриваются особенности эксплуатации и вывода на рабочие параметры. Помимо этого, уделяется внимание текущему состоянию дел, связанных с ускорителями электронов серии ЭЛВ: разработкой, исследованиями, применением и поставками.
В статье обсуждаются результаты пусконаладочных работ ВЧ-систем инжекционного комплекса NICA и планы по их дальнейшему развитию. Подготовка инжекционного комплекса к инжекции в коллайдер требует увеличения интенсивности пучка на выходе нуклотрона примерно на два порядка. Получение требуемой интенсивности будет достигнуто накоплением пучка на энергии инжекции с использованием электронного охлаждения и уменьшением потерь при ускорении. Это потребует оптимизации всех систем комплекса, и в том числе значительного уменьшения потерь, связанных с ВЧ-системами. Полученный опыт позволяет выбрать оптимальную стратегию для дальнейшего развития ВЧ-систем. Основными направлениями являются: (1) накопление пучка в продольном фазовом пространстве при инжекции в бустер, (2) уменьшение роста продольного эмиттанса при ускорении, (3) перепуск пучка сгусток-в-сгусток из бустера в нуклотрон без роста продольного эмиттанса и (4) минимизация потерь при ускорении и перепусках пучка. Последнее требует согласования темпа ускорения с возможностями существующих ВЧ-систем. |
---|
Описана методика определения эмиттанса пучков ионов углерода путем измерения их поперечных размеров в конце воздушного промежутка канала. Рассмотрено обратное преобразование фазовых эллипсов с учетом многократного кулоновского рассеяния частиц и наличия дисперсии в пучке ионов углерода. Приведены значения бетатронного эмиттанса перед первой квадрупольной линзой, которые сравниваются с данными, полученными прямым расчетом, начиная от внутренней мишени. Обсуждаются неточности в расчетных и измеренных значениях эмиттанса. Моделирование и измерение проводились при энергиях пучков перед мишенью 200, 300 и 400 МэВ/нуклон.
Ионный ускоритель - это многофункциональный инструмент, который, в том числе, может быть использован для моделирования эффектов нейтронного облучения в реакторных материалах. Под действием нейтронов в конструкционных материалах ядерных установок возникают дефекты кристаллической решетки и происходит накопление продуктов трансмутации (гелия и водорода) в структуре материала. В Курчатовском комплексе теоретической и экспериментальной физики (ККТЭФ) ускоритель тяжелых ионов ТИПр (тяжелоионный прототип) используется для моделирования радиационных повреждений в сталях и сплавах с помощью пучка ионов Fe2+ 5,6 МэВ. Для одновременной имплантации гелия (или водорода) в область дефектов на установке ТИПр проектируется второй канал, обеспечивающий пучок ионов гелия с энергией до 300 кэВ. В статье представлено описание проектируемой установки.
Нейтронные мониторы на основе газонаполненных пропорциональных счетчиков и первые результаты измерений были показаны на RuPAC-2018 и RuPAC-2021. Предполагается использовать эти детекторы для мониторинга стабильности условий проведения сеансов радиационной терапии. Здесь представлены процедура калибровки мониторов на источнике нейтронов AmBe и новые экспериментальные данные. Мониторы были использованы для измерения флюенса нейтронов за защитой экспериментальной установки «Центр коллективного пользования - радиобиологический стенд на углеродном пучке У-70» с энергией пучка ионов 450 МэВ/нуклон. Измерения сопровождались расчетным моделированием с использованием пакета программ CERN FLUKA. Показано хорошее согласие между результатами измерений и расчетов. Даже одиночный монитор со свинцовой вставкой, откалиброванный на AmBe-источнике, позволяет получать хорошие результаты в реальном нейтронном поле. Продемонстрирована возможность оценки флюенса нейтронов с энергией выше 10 МэВ по показаниям пары мониторов. Для улучшения качества измерений необходимо принимать во внимание разницу между условиями калибровки и измерений.
Точность калибровки светимости - важная проблема при эксплуатации коллайдеров, от успешного решения которой зависит точность проводимых экспериментов. В адронных коллайдерах калибровка светимости производится с использованием вандермееровского сканирования, целью которого является измерение перекрытия сталкивающихся пучков. При столкновении двух пучков их электромагнитное взаимодействие приводит к изменению перекрытия и, следовательно, к ошибке калибровки светимости. Как правило, этот эффект учитывается в предположении о гауссовом распределении частиц пучка. Однако известно, что распределение в пучках адронных коллайдеров отличается от гауссова, и, в более общем виде, описывается q-гауссовыми функциями. Точный учет электромагнитного взаимодействия становится актуальной задачей при повышении требований к точности измерений светимости (например, в проекте HL-LHC целью является точность 1 %). В данной работе представлена модель электромагнитного взаимодействия пучков с q-гауссовым распределением частиц, оценивается влияние этого взаимодействия на калибровку светимости методом вандермееровского сканирования. Вычисления проведены для условий экспериментов CMS и ATLAS. |
---|
Чтобы обеспечить непрерывность работы коллайдера ВЭПП-2000, необходимо точное измерение бетатронной частоты. Для этого в данной работе предлагается использовать уточняющие Фурье-преобразование методики, такие как интерполяция параболой (метод Гассиора), NAFF и оконные функции. Уточненная частота в дальнейшем используется при построении фазовых портретов пучка для контроля наводок магнитных полей высокого порядка. Кроме того, в работе рассмотрены методы выделения сигнала из смеси для последующего анализа - PCA и ICA. Наконец, для повышения точности определения частоты в работе описана простейшая имплементация фильтра Калмана для повышения точности последующего гармонического анализа. В дополнение ко всему вышеизложенному в работе кратко анализируется метод контроля работы самих датчиков положения пучка.
Однооборотная (и односгустковая) инжекция часто происходит при большой интенсивности инжектируемого пучка, по сравнению с циркулирующим. Коллективные эффекты, возникающие благодаря поперечным импедансам, могут ограничить эффективность инжекции. Были проанализированы условия сохранения дипольного момента при инжекции в присутствии машинной нелинейности, приводящей к расфазировке бетатронных колебаний. Теоретические результаты подкрепляются численным моделированием. Полученные выводы используются для интерпретации поведения реальных дипольных когерентных колебаний, наблюдаемых при инжекции в ВЭПП-2000.
В статье описаны основные принципы разработки распределенной системы управления (РСУ) и системы операторского контроля GARNET на основе микросервисной архитектуры в рамках работы на кластере высокой доступности. Описано применение системы операторского контроля в качестве компоненты РСУ. Приведены и описаны основные элементы программных компонент операторского контроля и РСУ, а также описан процесс конвейерной сборки и публикации программных средств в рабочую продуктовую среду, реализующий принцип непрерывной интеграции. Представлен механизм взаимодействия ключевых компонент между собой. Продемонстрирован механизм размещения сервисов управления при помощи системы контейнеризации Docker и оркестрации контейнеров Kubernetes. Также показаны примеры сервисов взаимодействия с пользователями в среде разрабатываемой системы операторского контроля GARNET, разделение пользователей по ролям и правам доступа, интеграция сервиса визуализации данных средствами Grafana, описан вектор дальнейшего развития РСУ и средств операторского управления, в частности, возможность использования практики разработки пользовательских web-интерфейсов, используя подход micro frontend. Представлены компоненты и результаты работы прототипа системы, разработанного для взаимодействия с измерительной инфраструктурой линейного ускорителя тяжелых ионов ТИПр (г. Москва, ККТЭФ). |
---|
Издательство
- Издательство
- НГУ
- Регион
- Россия, Новосибирск
- Почтовый адрес
- 630090, Новосибирская область, г. Новосибирск, ул. Пирогова, д. 1.
- Юр. адрес
- 630090, Новосибирская область, г. Новосибирск, ул. Пирогова, д. 1.
- ФИО
- Федорук Михаил Петрович (Руководитель)
- E-mail адрес
- rector@nsu.ru
- Контактный телефон
- +7 (383) 3634000
- Сайт
- https://www.nsu.ru/