1. Chéné Y. On the use of depth camera for 3D phenotyping of entire plants / Y. Chéné, D. Rousseau, P. Lucidarme, J. Bertheloot, V. Caffier, P. Morel, F. Chapeau-Blondeau // Computers and Electronics in Agriculture. 2012. Vol. 82. P. 122-127.
2. Chaudhury A. Machine vision system for 3D plant pheno- typing / A. Chaudhury, C. Ward, A. Talasaz, A.G. Ivanov, M. Brophy, B. Grodzinski, J.L. Barron // IEEE/ACM transactions on computational biology and bioinformatics. 2018. Vol. 16. №. 6. P. 2009-2022.
3. Berezhnoy V.A. Approaches for Automated Monitoring and Evaluation of In Vitro Plant’s Morphometric Parameters / V.A. Berezhnoy, O.A. Ivashchuk, Y.N. Maslakov, V.I. Fedorov, V.M. Yacenko // Journal of Computational and Theoretical Nanoscience. 2020. Vol. 17. №. 9-10. P. 4725-4732. EDN: KDYCMS
4. Бережной В.А., Обзор методов и алгоритмов автоматизированных систем фенотипирования растений. / В.А. Бережной, О.А. Иващук, Д.С. Семенов // Современные наукоемкие технологии. 2021. № 4. С. 111-116. EDN: IIAWKD
5. Automatic plant leaf classification for a mobile field guide / D. Knight, J. Painter, M. Potter // Rapport technique. Université de Stanford, 2010. - URL: https://stacks.stanford.edu/file/druid:bj600br8916/Knight_Painter_Potter_PlantLeafClas sification.pdf (date of the application 20.10.2021).
6. 3D leaf tracking for plant growth monitoring / W. Gélard, A. Herbulot, M. Devy, P. Casadebaig // 2018 25th IEEE International Conference on Image Processing (ICIP, Athens, Greece, 7-10 Oct. 2018 / IEEE Systems, Man, and Cybernetics Society, Institute of Electrical and Electronics Engineers. Piscataway. New Jersey. 2018: conference proceedings. URL: https://ieeexplore.ieee.org/abstract/document/8451553 (date of the application 20.10.2021).
7. Plant Species Recognition Methods using Leaf Image: Overview / S. Zhang, W. Huang, Y. A. Approaches to three-dimensional reconstruction of plant shoot topology and geometry /j. A. Gibbs, M. Pound, A. P. French [et al.] // Functional Plant Biology. 2017. Vol. 44, №. 1. P. 62-75.
8. Huang, C. Zhang // Neurocomputing. 2020. Vol. 408. P. 246-272.
9. 3D reconstruction methods for digital preservation of cultural heritage: A survey / L. Gomes, O. R. P. Bellon, L. Silva // Pattern Recognition Letters. 2014. Vol. 50. P. 3-14.
10. Shape-from-shading: A survey [Text] / R. Zhang, P. S. Tsai, J. E. Cryer, M. Shah // IEEE Transactions on Pattern Analysis and Machine Intelligence/ IEEE Systems, Man, and Cybernetics Society, Institute of Electrical and Electronics Engineers. Piscataway. New Jersey. 1999. URL: https://ieeexplore.ieee.org/abstract/document/784284 (date of the application 26.06.2021).
11. Shape-from-silhouette across time part i: Theory and algorithms / S. Baker, T. Kanade // International Journal of Computer Vision. - 2005. - Vol. 62, №. 3. - P. 221-247.
The visual hull: A new tool for contour-based image understanding / A. Laurentini // In Proceedings of the Seventh Scandinavian Conference on Image Analysis. 1991. Vol. 993. P. 1002.
12. A stochastic approach to stereo vision / S. T Barnard // Readings in Computer Vision. - Morgan Kaufmann. 1987. P. 21-25.
13. Cheprasov, D. E. Postroenie 3D modeli po neuporia- dochennoi kollektsii izobrazhenii / D. E. Cheprasov // Fundamentalnaia informatika i informatsionnye tekhnologii: SPbGU. 2016. P. 1-47.
14. Scene reconstruction from multiple uncalibrated views / T. Kanade, M. Han // Carnegie Mellon University: Pittsburgh, USA. - 2000. - URL: http://www.tka4.org/materials/study/5%20sem/%23Spec%20Sem/Mat%20Metody%20Obrabotki%20Izobrajeniy/Doklad%202/h4.pdf (date of the application 26.06.2021).