1. Сорокин А.С. Сравнительный анализ использования статистического моделирования и машинного обучения для оценки кредитного риска в микрофинансовых компаниях // Экономический вестник. 2024. Т. 3. № 2. С. 51-65. URL: https://eb-journal.ru/archives/10096.
2. Сорокин А.С. Разработка алгоритмов применения моделей интеллектуального анализа данных для управления кредитными рисками микрофинансовых организаций // Плехановский научный бюллетень. 2022. № 2. С. 99-108. URL:. EDN: MPWNZX
3. Сорокин А.С. Модель кредитного риска на основе логистической регрессии с изменяющимися во времени параметрами // Математическое и компьютерное моделирование в экономике, страховании и управлении рисками. 2023. № 8. С. 141-146. URL:. EDN: AGAFTZ
4. Bansal G., Sinha A.P., Zhao H. Tuning Data Mining Methods for Cost-Sensitive Regression: A Study in Loan Charge-Off Forecasting. Journal of Management Information Systems, 2008, vol. 25, no. 3, pp. 315-336. URL:. DOI: 10.2753/MIS0742-1222250309
5. Zhang H., Legro R.S., Zhang J., Zhang L. et al. Decision Trees for Identifying Predictors of Treatment Effectiveness in Clinical Trials and its Application to Ovulation in a Study of Women with Polycystic Ovary Syndrome. Human Reproduction, 2010, vol. 25, iss. 10, pp. 2612-2621. URL:. DOI: 10.1093/humrep/deq210
6. Smith L.D., Lawrence E.C. Forecasting Losses on a Liquidating Long-Term Loan Portfolio. Journal of Banking & Finance, 1995, vol. 19, iss. 6, pp. 959-985. DOI: 10.1016/0378-4266(94)00065-B
7. Greenidge K., Grosvenor T. Forecasting Non-Performing Loans in Barbados. Journal of Business, Finance and Economics in Emerging Economies, 2010, vol. 5, pp. 80-108.
8. Abdou H.A.H., Pointon J. Credit Scoring, Statistical Techniques and Evaluation Criteria: A Review of the Literature.Intelligent Systems in Accounting, Finance & Management, 2011, vol. 18, no. 2-3, pp. 59-88. DOI: 10.1002/isaf.325
9. Darroch J.N., Ratcliff D. Generalized Iterative Scaling for Log-Linear Models. The Annals of Mathematical Statistics, 1972, vol. 43, iss. 5, pp. 1470-1480. DOI: 10.1214/aoms/1177692379
10. Durand D. Risk Elements in Consumer Installment Financing. National Bureau of Economic Research, New York, NY, USA, 1941. URL: https://www.nber.org/books-and-chapters/risk-elements-consumer-instalment-financing.
11. Makowski P. Credit Scoring Branches Out. The Credit World, 1985, no. 75, pp. 30-37.
12. Angelini E., Di Tollo G., Roli A. A Neural Network Approach for Credit Risk Evaluation. The Quarterly Review of Economics and Finance, 2008, vol. 48, iss. 4, pp. 733-755. DOI: 10.1016/j.qref.2007.04.001
13. Henley W.E., Hand D.J. A k-Nearest-Neighbour Classifier for Assessing Consumer Credit Risk. Journal of the Royal Statistical Society. Series D (The Statistician), 1996, vol. 45, no. 1, pp. 77-95. DOI: 10.2307/2348414
14. Hurley M., Adebayo J. Credit Scoring in the Era of Big Data. Yale Journal of Law and Technology, 2017, vol. 18. URL: https://openyls.law.yale.edu/handle/20.500.13051/7808.
15. Davis R.H., Edelman D.B., Gammerman A.J. Machine-Learning Algorithms for Credit-Card Applications. IMA Journal of Management Mathematics, 1992, vol. 4, iss. 1, pp. 43-51. DOI: 10.1093/imaman/4.1.43 EDN: IPSOUT
16. Frydman H., Altman E.I., Kao D.L.Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress. The Journal of Finance, 1985, vol. 40, iss. 1, pp. 269-291. DOI: 10.1111/J.1540-6261.1985.TB04949.X
17. Zhou S.-R., Zhang D.-Y. A Nearly Neutral Model of Biodiversity. Ecology, 2008, vol. 89, iss. 1, pp. 248-258. DOI: 10.1890/06-1817.1
18. Jensen H.L. Using Neural Networks for Credit Scoring. Managerial Finance, 1992, vol. 18, iss. 6, pp. 15-26. DOI: 10.1108/EB013696
19. West D. Neural Network Credit Scoring Models.Computers & Operations Research, 2000, vol. 27, issues 11-12, pp. 1131-1152. DOI: 10.1016/S0305-0548(99)00149-5 EDN: AFKGTT
20. West D., Dellana S., Qian J. Neural Network Ensemble Strategies for Financial Decision Applications.Computers & Operations Research, 2005, vol. 32, iss. 10, pp. 2543-2559. DOI: 10.1016/S0305-0548(04)00069-3
21. Finlay S. Are We Modelling the Right Thing? The Impact of Incorrect Problem Specification in Credit Scoring. Expert Systems with Applications, 2009, vol. 36, iss. 5, pp. 9065-9071. DOI: 10.1016/j.eswa.2008.12.016
22. Kamalloo E., Saniee Abadeh M. Credit Risk Prediction Using Fuzzy Immune Learning. Advances in Fuzzy Systems, 2014, vol. 2014, pp. 1-11. DOI: 10.1155/2014/651324
23. Dietterich T.G. Machine-Learning Research. AI Magazine, 1997, vol. 18, no. 4, p. 97. DOI: 10.1609/AIMAG.V18I4.1324
24. Huang Z., Chen H., Hsu C.-J. et al. Credit Rating Analysis with Support Vector Machines and Neural Networks: A Market Comparative Study. Decision Support Systems, 2004, vol. 37, iss. 4, pp. 543-558. DOI: 10.1016/S0167-9236(03)00086-1
25. Zhu Y., Xie C., Wang G.-J., Yan X.-G.Comparison of Individual, Ensemble and Integrated Ensemble Machine Learning Methods to Predict China’s SME Credit Risk in Supply Chain Finance. Neural Computing and Applications, 2017, vol. 28, suppl. 1, pp. 41-50. DOI: 10.1007/s00521-016-2304-x EDN: KVAWPT
26. Opitz D., Maclin R. Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research, 1999, vol. 11, pp. 169-198. DOI: 10.1613/jair.614
27. Волкова Е.С., Гисин В.Б., Соловьев В.И. Современные подходы к применению методов интеллектуального анализа данных в задаче кредитного скоринга // Финансы и кредит. 2017. Т. 23. Вып. 34. С. 2044-2060. DOI: 10.24891/fc.23.34.2044 EDN: WTRIKV
28. Широбокова М.А., Лётчиков А.В. Применение случайного леса выживаемости к динамической оценке кредитного риска // Математическое и компьютерное моделирование в экономике, страховании и управлении рисками. 2019. № 4. С. 113-118. URL: https://risk.sgu.ru/2019/proc/025.pdf. EDN: FTFYHP
29. Исаев Д.В. Динамическое ансамблевое обучение для оценки кредитоспособности // Инновации и инвестиции. 2022. № 3. С. 74-79. URL: https://cyberleninka.ru/article/n/dinamicheskoe-ansamblevoe-obuchenie-dlya-otsenki-kreditosposobnosti. EDN: RSTZUM
30. Широбокова М.А. Модель оценки риска дефолта на всем протяжении жизни кредита // Вестник Удмуртского университета. Серия: Экономика и право. 2018. Т. 28. Вып. 2. С. 228-233. URL: https://cyberleninka.ru/article/n/model-otsenki-riska-defolta-na-vsem-protyazhenii-zhizni-kredita. EDN: XQCLBJ
31. Гришин А.А., Строев С.П. Разработка модели поведенческого скоринга с использованием методов градиентного бустинга // Научно-технический вестник Поволжья. 2018. № 9. С. 93-98. URL:. EDN: YLHZUD
32. Дьяков О.А. Особенности применения методов Data Mining в скоринговых решениях для коммерческих банков // Научные записки молодых исследователей. 2017. № 3. С. 5-11. URL:. EDN: ZBGXMH
33. Carol Alexander, Yang Han, Xiaochun Meng. Static and Dynamic Models for Multivariate Distribution Forecasts: Proper Scoring Rule Tests of Factor-Quantile vs. Multivariate GARCH Models.International Journal of Forecasting, 2022. DOI: 10.48550/arXiv.2004.14108
34. Jayanti D., Sadik K., Afendi F.M. Multivariate Generalized Autoregressive Score Model (Case Study: Vegetable Oils and Crude Oil Price Data). Journal of Physics: Conference Series, IOP Publishing, 2021, vol. 1863, no. 1, pp. 1-18. DOI: 10.1088/1742-6596/1863/1/012059 EDN: POUXXR
35. Schneider W. Systems of Seemingly Unrelated Regression Equations with Time Varying Coefficients - An Interplay of Kalman Filtering, Scoring, EM- and MINQUE-Method.Computers & Mathematics with Applications, 1992, vol. 24, issues 8-9, pp. 1-16. DOI: 10.1016/0898-1221(92)90183-i
36. Bitto A., Frühwirth-Schnatter S. Achieving Shrinkage in a Time-Varying Parameter Model Framework. Journal of Econometrics, 2019, vol. 210, iss. 1, pp. 75-97. DOI: 10.1016/j.jeconom.2018.11.006
37. Chan J.C.C., Eisenstat E. Bayesian Model Comparison for Time-Varying Parameter VARs with Stochastic Volatility. Journal of Applied Econometrics, 2018, vol. 33, iss. 4, pp. 509-532. DOI: 10.1002/jae.2617
38. Kalli M., Griffin J.E. Time-Varying Sparsity in Dynamic Regression Models. Journal of Econometrics, 2014, vol. 178, no. 2, pp. 779-793. DOI: 10.1016/j.jeconom.2013.10.012
39. Orlando G., Pelosi R. Non-Performing Loans for Italian Companies: When Time Matters. An Empirical Research on Estimating Probability to Default and Loss Given Default.International Journal of Financial Studies, 2020, vol. 8, no. 4, p. 68. DOI: 10.3390/ijfs8040068 EDN: ZGIUOR
40. Aslan A., Poppe L., Posch P. Are Sustainable Companies More Likely to Default? Evidence from the Dynamics between Credit and ESG Ratings. Sustainability, 2021, vol. 13, no. 15, 8568. DOI: 10.3390/su13158568 EDN: CMTAPQ
41. Orlova E.V. Methodology and Models for Individuals’ Creditworthiness Management Using Digital Footprint Data and Machine Learning Methods. Mathematics, 2021, vol. 9, no. 15, 1820. DOI: 10.3390/math9151820 EDN: FLHUXV
42. Moiseev N., Sorokin A., Zvezdina N. et al. Credit Risk Theoretical Model on the Base of DCC-GARCH in Time-Varying Parameters Framework. Mathematics, 2021, vol. 9, no. 19, 2423. DOI: 10.3390/math9192423 EDN: EGSPCX