1. Georgescu I.M., Ashhab S., Nori F. Quantum simulation // Reviews of Modern Physics. 2014. Vol. 88. P. 153-186. DOI: 10.1103/RevModPhys.86.153 EDN: SQCURV
I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation”, Reviews of Modern Physics, vol. 88, pp. 153-186, 2014,. DOI: 10.1103/RevModPhys.86.153 EDN: SQCURV
2. Superconducting qubits: Current state of play / M. Kjaergaard [et al.] // Annual Reviews of Condensed Matter Physics. 2020. Vol. 11. P. 369-395. DOI: 10.1146/annurev-conmatphys-031119-050605 EDN: ECRMZU
M. Kjaergaard et al., “Superconducting qubits: Current state of play”, Annual Reviews of Condensed Matter Physics, vol. 11, pp. 369-395, 2020,. DOI: 10.1146/annurev-conmatphys-031119-050605 EDN: ECRMZU
3. Superconducting quantum computing: A review / H.-L. Huang [et al.] // Science China Information Sciences. 2020. Vol. 63. P. 180501. DOI: 10.1007/S11432-020-2881-9 EDN: CESRQR
H.-L. Huang et al., “Superconducting quantum computing: A review”, Science China Information Sciences, vol. 63, p. 180501, 2020,. DOI: 10.1007/S11432-020-2881-9
4. Shi J. Entanglement research for the coupled superconducting phase qubit and a two-level system // Advances in Condensed Matter Physics. 2020. Vol. 2020. P. 3838106. DOI: 10.1155/2020/3838106
J. Shi, “Entanglement research for the coupled superconducting phase qubit and a two-level system”, Advances in Condensed Matter Physics, vol. 2020, p. 3838106, 2020,. DOI: 10.1155/2020/3838106
5. Quantum entanglement / R. Horodecki [et al.] // Reviews of Modern Physics. 2009. Vol. 81, no. 2. P. 865-942. DOI: 10.1103/RevModPhys.81.865 EDN: XWZFOQ
R. Horodecki et al., “Quantum entanglement”, Reviews of Modern Physics, vol. 81, no. 2, pp. 865-942, 2009,. DOI: 10.1103/RevModPhys.81.865 EDN: XWZFOQ
6. Bruss D., Leuchs G., Quantum Information: From Foundations to Quantum Technology Applications. Cambridge: Wiley-VCH, 2019. 892 p.
D. Bruss and G. Leuchs, Quantum Information: From Foundations to Quantum Technology Applications. Cambridge: Wiley-VCH, 2019.
7. Luo M.-X., Fe S.-M. Genuinely multipartite entanglement vias shallow quantum circuits // Advanced Quantum Technologies. 2023. Vol. 6, no. 2. P. 2200089. DOI: 10.1002/qute.202200089 EDN: QFKZKC
M.-X. Luo and S.-M. Fe, “Genuinely multipartite entanglement vias shallow quantum circuits”, Advanced Quantum Technologies, vol. 6, no. 2, p. 2200089, 2023,. DOI: 10.1002/qute.202200089 EDN: QFKZKC
8. Generation of three-qubit entangled states using superconducting phase qubits / M. Neeley [et al.] // Nature. 2010. Vol. 467, no. 7315. P. 570-573. DOI: 10.1038/nature09418
M. Neeley et al., “Generation of three-qubit entangled states using superconducting phase qubits”, Nature, vol. 467, no. 7315, pp.570-573, 2010,. DOI: 10.1038/nature09418
9. Dissipative preparation of W states in trapped ion systems / D.C. Cole [et al.] // New Journal of Physics. 2021. Vol. 23, no. 7. P. 073001. DOI: 10.1088/1367-2630/ac09c8 EDN: GWOIIA
D. C. Cole et al., “Dissipative preparation of W states in trapped ion systems”, New Journal of Physics, vol. 23, no. 7, p. 073001, 2021,. DOI: 10.1088/1367-2630/ac09c8 EDN: GWOIIA
10. Gühne O., Tôth G. Entanglement detection // Physics Reports. 2009. Vol. 474, no. 1-6. P. 1-75. DOI: 10.1016/j.physrep.2009.02.004 EDN: MEPNGT
O. Gühne and G. Tôth, “Entanglement detection”, Physics Reports, vol. 474, no. 1-6, pp. 1-75, 2009,. DOI: 10.1016/j.physrep.2009.02.004 EDN: MEPNGT
11. Entanglement certification from theory to experiment / N. Friis [et al.] // Nature Reviews Physics. 2019. Vol. 1. P. 72-87. DOI: 10.1038/s42254-018-0003-5 EDN: UAVJJR
N. Friis et al., “Entanglement certification from theory to experiment”, Nature Reviews Physics, vol. 1, pp. 72-87, 2019,. DOI: 10.1038/s42254-018-0003-5 EDN: UAVJJR
12. Башкиров Е.К. Тепловое перепутывание в двухатомной модели Тависа - Каммингса с учетом диполь-дипольного взаимодействия // Физика волновых процессов и радиотехнические системы. 2023. Т. 26, № 2. С. 9-17. DOI: 10.18469/1810-3189.2023.26.2.9-17 EDN: EVCKEZ
E. K. Bashkirov, “Thermal entanglement in two-atom Tavis-Cummings model with taking into account the dipole-dipole interaction”, Physics of Wave Processes and Radio Systems, vol. 26, no. 2, pp. 9-17, 2023, (In Russ.). DOI: 10.18469/1810-3189.2023.26.2.9-17 EDN: EVCKEZ
13. Башкиров Е.К. Перепутывание двух сверхпроводящих кубитов, индуцированное тепловым шумом резонатора со средой Керра, при наличии начальной атомной когерентности // Физика волновых процессов и радиотехнические системы. 2022. Т.25, № 1. С. 7-15. DOI: 10.18469/1810-3189.2022.25.1.7-15 EDN: SVAJTN
E. K. Bashkirov, “Entanglement of two superconducting qubits induced by a thermal noise of a cavity with Kerr medium taking into account the atomic coherence”, Physics of Wave Processes and Radio Systems, vol. 25, no. 1, pp. 7-15, 2022, (In Russ.). DOI: 10.18469/1810-3189.2022.25.1.7-15 EDN: SVAJTN
14. Захаров Р.К., Башкиров Е.К. Влияние расстройки и керровской нелинейности на атом-атомное перепутывание в двойной двухфотонной модели Джейнса - Каммингса // Физика волновых процессов и радиотехнические системы. 2021. Т. 24, № 1. С.9-14. DOI: 10.18469/1810-3189.2021.24.1.9-14 EDN: IEEODZ
R. K. Zakharov and E. K. Bashkirov, “Influence of detuning and Kerr nonlinearity on atom-atom entanglement in the double two-photon Jaynes-Cummings model”, Physics of Wave Processes and Radio Systems, vol. 24, no. 1, pp. 9-14, 2021, (In Russ.). DOI: 10.18469/1810-3189.2021.24.1.9-14 EDN: IEEODZ
15. Башкиров Е.К. Перепутывание атомов, индуцированное тепловым шумом при наличии начальной атомной когерентности // Физика волновых процессов и радиотехнические системы. 2020. Т. 23, № 3. С. 10-17. DOI: 10.18469/1810-3189.2020.23.3.10-17 EDN: PEDDBZ
E. K. Bashkirov, “Entanglement of atoms induced by thermal noise in the presence of initial atomic coherence”, Physics of Wave Processes and Radio Systems, vol. 23, no. 3, pp. 10-17, 2020, (In Russ.). DOI: 10.18469/1810-3189.2020.23.3.10-17 EDN: PEDDBZ
16. Башкиров Е.К., Гуслянникова М.О. Перепутывание атомов с двухфотонными переходами при наличии динамического штарковского сдвига энергетических уровней // Физика волновых процессов и радиотехнические системы. 2019. Т. 22, № 3. С. 36-43. DOI: 10.18469/1810-3189.2019.22.3.36-43 EDN: TMNRRS
E. K. Bashkirov and M. O. Guslyannikova, “The entanglement of atoms with two-photon transitions in the presence of ac Stark shift of energy levels”, Physics of Wave Processes and Radio Systems, vol. 22, no. 3, pp. 36-43, 2019, (In Russ.). DOI: 10.18469/1810-3189.2019.22.3.36-43 EDN: TMNRRS
17. Filippov S.N. Quantum mappings and characterization of entangled quantum states // Journal of Mathematical Sciences. 2019. Vol. 241, no. 2. P. 210-236. DOI: 10.1007/s10958-019-04418-3 EDN: EHJLMZ
S. N. Filippov, “Quantum mappings and characterization of entangled quantum states”, Journal of Mathematical Sciences, vol. 241, no. 2, pp. 210-236, 2019,. DOI: 10.1007/s10958-019-04418-3 EDN: EHJLMZ
18. Quantum fidelity measures for mixed states / Y.-C. Liang [et al.] // Reports on Progress in Physics. 2019. Vol. 82, no. 7. P. 076001. DOI: 10.1088/1361-6633/ab1ca4 EDN: HFLCVN
Y.-C. Liang et al., “Quantum fidelity measures for mixed states”, Reports on Progress in Physics, vol. 82, no. 7, p. 076001, 2019,. DOI: 10.1088/1361-6633/ab1ca4 EDN: HFLCVN
19. Ma M., Li Y., Shang J. Multipartite entanglement measures: A review // arXiv:2309.09459. 2023. P. 1-14. DOI: 10.48550/arXiv.2309.09459
M. Ma, Y. Li, and J. Shang, “Multipartite entanglement measures: A review”, arXiv:2309.09459, pp. 1-14, 2023,. DOI: 10.48550/arXiv.2309.09459
20. Yu T., Eberly J.H. Finite-time disentanglement via spontaneous emission // Physical Review Letters. 2003. Vol. 93, no. 14. P. 140404. DOI: 10.1103/PhysRevLett.93.140404
T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission”, Physical Review Letters, vol. 93, no. 14, p. 140404, 2003,. DOI: 10.1103/PhysRevLett.93.140404
21. Environment-induced sudden death of entanglement / M.P. Almeida [et al.] // Science. 2007. Vol. 316, no. 5824. P. 579-582. DOI: 10.1126/science.1139892
M. P. Almeida et al., “Environment-induced sudden death of entanglement”, Science, vol. 316, no. 5824, pp. 579-582, 2007. DOI: 10.1126/science.1139892
22. Ge M., Zhu L.-F., Qui L. Three-qubit entanglement sudden death // Communications in Theoretical Physics. 2008. Vol. 49, no. 6. P. 1443-1448. DOI: 10.1088/0253-6102/49/6/20 EDN: MGTVBF
M. Ge, L.-F. Zhu, and L. Qui, “Three-qubit entanglement sudden death”, Communications in Theoretical Physics, vol. 49, no. 6, pp. 1443-1448, 2008,. DOI: 10.1088/0253-6102/49/6/20 EDN: MGTVBF
23. Xie S., Younis D., Eberly J.H. Evidence for unexpected robustness of multipartite entanglement against sudden death from spontaneous emission // Physical Review Research. 2023. Vol. 5, no. 3. P. L032015. DOI: 10.1103/PhysRevResearch.5.L032015 EDN: ISPDSX
S. Xie, D. Younis, and J. H. Eberly, “Evidence for unexpected robustness of multipartite entanglement against sudden death from spontaneous emission”, Physical Review Research, vol. 5, no. 3, p. L032015, 2023,. DOI: 10.1103/PhysRevResearch.5.L032015 EDN: ISPDSX
24. Багров А.Р., Башкиров Е.К. Динамика теплового перепутывания пар кубитов в трехкубитной модели Тависа - Каммингса // Журнал технической физики. 2024. Т. 94, № 4. (Принято к печати).
A. R. Bagrov and E. K. Bashkirov, “Dynamics of thermal entanglement of pairs of qubits in the three-qubit Tavis-Cummings model”, Zhurnal tekhnicheskoy fiziki, vol. 94, no. 4, 2024, to be published. (In Russ.).
25. Peres A. Separability criterion for density matrices // Physical Review Letters. 1996. Vol. 77, no. 8. P. 1413-1415. DOI: 10.1103/PhysRevLett.77.1413
A. Peres, “Separability criterion for density matrices”, Physical Review Letters, vol. 77, no. 8, pp. 1413-1415, 1996,. DOI: 10.1103/PhysRevLett.77.1413
26. Horodecki R., Horodecki M., Horodecki P. Separability of mixed states: Necessary and sufficient condition // Physics Letters A. 1996. Vol. 223, no. 1-2. P. 1-8. DOI: 10.1016/S0375-9601(96)00706-2 EDN: ANQBTF
R. Horodecki, M. Horodecki, and P. Horodecki, “Separability of mixed states: Necessary and sufficient condition”, Physics Letters A, vol. 223, no. 1-2, pp. 1-8, 1996,. DOI: 10.1016/S0375-9601(96)00706-2 EDN: ANQBTF
27. Багров А.Р., Башкиров Е.К. Динамика трехкубитной модели Тависа - Каммингса // Вестник Самарского университета. Естественнонаучная серия. 2022. Т. 28, № 1-2. С. 95-105. DOI: 10.18287/2541-7525-2022-28-1-2-95-105 EDN: RJIHGM
A. R. Bagrov and E. K. Bashkirov, “Dynamics of the three-qubit Tavis-Cummings model”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya, vol. 28, no. 1-2, pp. 95-105, 2022, (In Russ.). DOI: 10.18287/2541-7525-2022-28-1-2-95-105 EDN: RJIHGM