Функции активных форм кислорода в растительных клетках в норме и при адаптации (2021)
В обзоре рассмотрены представления о роли активных форм кислорода в жизни растительной клетки. При этом уделяется внимание как отрицательным аспектам их воздействия на клеточные компоненты (перекисное окисление липидов, карбонилирование белков и повреждение ДНК), так и положительным функциям (участие в трансдукции сигналов, ответе на стрессорное воздействие и метаболизме). Рассмотрены также основные типы активных форм кислорода и места их генерации в растительной клетке. Сделано заключение, что активные формы кислорода, неизбежно возникающие у любых аэробных организмов, следует рассматривать как важнейший регулятор большого числа процессов у растений, таких как рост, развитие, метаболизм, старение и стрессовые реакции. При этом если роль активных форм кислорода при стрессе и в трансдукции сигналов изучена достаточно подробно, то их прямая метаболическая роль исследована относительно слабо, за исключением полимеризации лигнина и размягчения клеточной
стенки, что указывает на необходимость проведения дальнейших исследований в этой области.
Идентификаторы и классификаторы
Кислород влияет на жизнь подавляющего большинства организмов на нашей планете. Животные и растения используют кислород как терминальный акцептор электронов в процессе клеточного дыхания. Тем не менее любые электрон-транспортные процессы, например дыхание или фотосинтез, неизбежно сопряжены с образованием активных форм кислорода (АФК), таких как супероксид-анион-радикал, синглетный кислород, перекись водорода и гидроксильный радикал [1].
Список литературы
- Halliwell B. Reactive species and antioxidants. redox biology is a fundamental theme of aerobic life // Plant Physiol. 2006. Vol. 141. No. 2. P. 312–322. DOI: 10.1104/pp.106.077073
- Del Río L.A. ROS and RNS in plant physiology: An overview // J Exp Bot. 2015. Vol. 66. No. 10. P. 2827–2837. DOI: 10.1093/jxb/erv099
- Krieger-Liszkay A. Singlet oxygen production in photosynthesis // J Exp Bot. 2005. Vol. 56. No. 411. P. 337–346. DOI: 10.1093/jxb/erh237
- Janků M., Luhová L., Petřivalský M. On the origin and fate of reactive oxygen species in plant cell compartments // Antioxidants. 2019. Vol. 8. No. 4. P. 105. DOI: 10.3390/antiox8040105
- Keren N., Gong H., Ohad I. Oscillations of Reaction Center II-D1protein degradation in vivo induced by repetitive light flashes: Correlation between the level of RCII-Q-Band protein degradation in low light // J Biol Chem. 1995. Vol. 270. No. 2. P. 806–814.
DOI: 10.1074/jbc.270.2.806 - Zolla L., Rinalducci S. Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses // Biochemistry. 2002. Vol. 41. No. 48. P. 14391–14402. DOI: 10.1021/bi0265776
- Strand Å., Asami T., Alonso J., et al. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX // Nature. 2003. Vol. 421. P. 79–83. DOI: 10.1038/nature01204
- Valko M., Morris H., Cronin M. Metals, toxicity and oxidative stress // Curr Med Chem. 2005. Vol. 12. No. 10. P. 1161–1208. DOI: 10.2174/0929867053764635
- Gechev T.S., Van Breusegem F., Stone J.M., et al. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death // BioEssays. 2006. Vol. 28. No. 11. P. 1091–1101. DOI: 10.1002/bies.20493
- Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions // Plant Physiol. 2006. Vol. 141. No. 2. P. 391–396. DOI: 10.1104/pp.106.082040
- Foyer C.H., Noctor G. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications // Antioxid Redox Signal. 2009. Vol. 11. No. 4. P. 861–905.
DOI: 10.1089/ars.2008.2177 - Navrot N., Rouhier N., Gelhaye E., Jacquot J.P. Reactive oxygen species generation and antioxidant systems in plant mitochondria // Physiol Plant. 2007. Vol. 129. No. 1. P. 185–195. DOI: 10.1111/j.1399-3054.2006.00777.x
- Taylor N.L., Tan Y.F., Jacoby R.P., Millar A.H. Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes // J Proteomics. 2009. Vol. 72. No. 3. P. 367–378. DOI: 10.1016/j.jprot.2008.11.006
- Quan L.J., Zhang B., Shi W.W., Li H.Y. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network // J Integr Plant Biol. 2008. Vol. 50. No. 1. P. 2–18. DOI: 10.1111/j.1744-7909.2007.00599.x
- Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants // Front Environ Sci. 2014. Vol. 2. P. 53. DOI: 10.3389/fenvs.2014.00053
- Kawano Y., Kaneko-Kawano T., Shimamoto K. Rho family GTPase-dependent immunity in plants and animals // Front Plant Sci. 2014. Vol. 5. P. 522. DOI: 10.3389/fpls.2014.00522
- Kärkönen A., Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants // Phytochemistry. 2015. Vol. 112. P. 22–32. DOI: 10.1016/j.phytochem.2014.09.016
- Schmitt F.J., Renger G., Friedrich T., et al. Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms // Biochim Biophys Acta Bioenerg. 2014. Vol. 1837. No. 6. P. 835–848. DOI: 10.1016/j.bbabio.2014.02.005
- Choudhury S., Panda P., Sahoo L., Panda S.K. Reactive oxygen species signaling in plants under abiotic stress // Plant Signal Behav. 2013. Vol. 8. No. 4. P. e23681. DOI: 10.4161/psb.23681
- Petrov V.D., Van Breusegem F. Hydrogen peroxide – a central hub for information flow in plant cells // AoB PLANTS. 2012.Vol. 2012. ID pls014. DOI: 10.1093/aobpla/pls014
- Sandalio L.M., Romero-Puertas M.C. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks // Ann Bot. 2015. Vol. 116. No. 4. P. 475–485.
DOI: 10.1093/aob/mcv074 - Goyer A., Johnson T.L., Olsen L.J., et al. Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis // J Biol Chem. 2004. Vol. 279. No. 17. P. 16947–16953. DOI: 10.1074/jbc.M400071200
- Byrne R.S., Hänsch R., Mendel R.R., Hille R. Oxidative half-reaction of Arabidopsis thaliana sulfite oxidase: Generation of superoxide by a peroxisomal enzyme // J Biol Chem. 2009. Vol. 284. No. 51. P. 35479–35484. DOI: 10.1074/jbc.M109.067355
- Smirnoff N., Arnaud D. Hydrogen peroxide metabolism and functions in plants // New Phytol. 2019. Vol. 221. No. 3. P. 1197–1214. DOI: 10.1111/nph.15488
- Qi J., Wang J., Gong Z., Zhou J.M. Apoplastic ROS signaling in plant immunity // Curr Opin Plant Biol. 2017. Vol. 38. P. 92–100. DOI: 10.1016/j.pbi.2017.04.022
- Veitch N.C. Structural determinants of plant peroxidase function // Phytochem Rev. 2004. Vol. 3. No. 1–2. P. 3–18. DOI: 10.1023/B: PHYT.0000047799.17604.94
- Angelini R., Cona A., Federico R., et al. Plant amine oxidases “on the move”: An update // Plant Physiol Biochem. 2010. Vol. 48. No. 7. P. 560–564. DOI: 10.1016/j.plaphy.2010.02.001
- Planas-Portell J., Gallart M., Tiburcio A.F., Altabella T. Coppercontaining amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana // BMC Plant Biol. 2013. Vol. 13. P. 109.DOI: 10.1186/1471-2229-13-109
- Davidson R.M., Reeves P.A., Manosalva P.M., Leach J.E. Germins: A diverse protein family important for crop improvement // Plant Sci. 2009. Vol. 177. No. 6. P. 499–510. DOI: 10.1016/j.plantsci.2009.08.012
- Lane B.G. Oxalate oxidases and differentiating surface structure in wheat: Germins // Biochem J. 2000. Vol. 349. No. 1. P. 309–321. DOI: 10.1042/0264-6021:3490309
- Foyer C.H., Noctor G. Ascorbate and glutathione: The heart of the Redox hub // Plant Physiol. 2011. Vol. 155. No. 1. P. 2–18. DOI: 10.1104/pp.110.167569
- Dat J., Vandenabeele S., Vranová E., et al. Dual action of the active oxygen species during plant stress responses // Cell Mol Life Sci. 2000. Vol. 57. No. 5. P. 779–795. DOI: 10.1007/s000180050041
- Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions // J Bot. 2012. Vol. 2012. ID217037. DOI: 10.1155/2012/217037
- Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants // Plant Physiol Biochem. 2010. Vol. 48. No. 12. P. 909–930. DOI: 10.1016/j.plaphy.2010.08.016
- Anjum N.A., Sofo A., Scopa A., et al. Lipids and proteins – major targets of oxidative modifications in abiotic stressed plants // Environ Sci Pollut Res. 2015. Vol. 22. No. 6. P. 4099–4121. DOI: 10.1007/s11356-014-3917-1
- Farmer E.E., Mueller M.J. ROS-mediated lipid peroxidation and RESactivated signaling // Annu Rev Plant Biol. 2013. Vol. 64. P. 429–450. DOI: 10.1146/annurev-arplant-050312-120132
- Schneider C., Porter N.A., Brash A.R. Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation // J Biol Chem. 2008. Vol. 283. No. 23. P. 15539–15543.
DOI: 10.1074/jbc.R800001200 - Rodriguez Milla M.A., Maurer A., Huete A.R., Gustafson J.P. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways // Plant J. 2003. Vol. 36. No. 5. P. 602–615. DOI: 10.1046/j.1365-313X.2003.01901.x
- Timperio A.M., Egidi M.G., Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP) // J Proteomics. 2008. Vol. 71. No. 4. P. 391–411. DOI: 10.1016/j.jprot.2008.07.005
- Johansson E., Olsson O., Nyström T. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana // J Biol Chem. 2004. Vol. 279. No. 21. P. 22204–22208. DOI: 10.1074/jbc.M402652200
- Davies M.J. The oxidative environment and protein damage //Biochim Biophys Acta Proteins
Proteom. 2005. Vol. 1703. No. 2. P. 93–109. DOI: 10.1016/j.bbapap.2004.08.007 - Møller I.M., Jensen P.E., Hansson A. Oxidative modifications to cellular components in plants // Ann Rev Plant Biol. 2007. Vol. 58. P. 459–481. DOI: 10.1146/annurev.arplant.58.032806.103946
- Xu G., Chance M.R. Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting // Anal Chem. 2005. Vol. 77. No. 14. P. 4549–4555. DOI: 10.1021/ac050299+
- Sweetlove L.J., Heazlewoo J.L., Herald V., et al. The impact of oxidative stress on Arabidopsis mitochondria // Plant J. 2002. Vol. 32. No. 6. P. 891–904. DOI: 10.1046/j.1365–313x.2002.01474.x
- Tan Y.-F., O’Toole N., Taylor N.L., Millar A.H. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function // Plant Physiol. 2010. Vol. 152. No. 2. P. 747–761. DOI: 10.1104/pp.109.147942
- Roldán-Arjona T., Ariza R.R. Repair and tolerance of oxidative DNA damage in plants // Mutat Res Rev Mutat Res. 2009. Vol. 681. No. 2–3. P. 169–179. DOI: 10.1016/j.mrrev.2008.07.003
- Wauchope O.R., Mitchener M.M., Beavers W.N., et al. Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA // Nucleic Acids Res. 2018. Vol. 46. No. 7. P. 3458–3467. DOI: 10.1093/nar/gky089
- Noctor G., Mhamdi A., Foyer C.H. The roles of reactive oxygen metabolism in drought: not so cut and dried // Plant Physiol. 2014. Vol. 164. No. 4. P. 1636–1648. DOI: 10.1104/pp.113.233478
- Hernández J.A., Jiménez A., Mullineaux P., Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences // Plant Cell Environ. 2000. Vol. 23. No. 8. P. 853–862. DOI: 10.1046/j.1365-3040.2000.00602.x
- Vinit-Dunand F., Epron D., Alaoui-Sossé B., Badot P.M. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants // Plant Sci. 2002. Vol. 163. No. 1. P. 53–58. DOI: 10.1016/S0168–9452(02)00060–2
- Logan B.A., Kornyeyev D., Hardison J., Holaday A.S. The role of antioxidant enzymes in photoprotection // Photosynth Res. 2006. Vol. 88. No. 2. P. 119–132. DOI: 10.1007/s11120-006-9043-2
- Gao Q., Zhang L. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana // J Plant Physiol. 2008. Vol. 165. No. 2. P. 138–148. DOI: 10.1016/j.jplph.2007.04.002
- Suzuki N., Koussevitzky S., Mittler R., Miller G. ROS and redox signalling in the response of plants to abiotic stress // Plant Cell Environ. 2012. Vol. 35. No. 2. P. 259–270. DOI: 10.1111/j.1365-3040.2011.02336.x
- Radwan D.E.M., Fayez K.A., Mahmoud S.Y., Lu G. Modifications of antioxidant activity and protein composition of bean leaf due to bean yellow mosaic virus infection and salicylic acid treatments // Acta Physiol Plant. 2010. Vol. 32. No. 5. P. 891–904.
DOI: 10.1007/s11738-010-0477-y - Sasaki-Sekimoto Y., Taki N., Obayashi T., et al. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance
in Arabidopsis // Plant J. 2005. Vol. 44. No. 4. P. 653–668. DOI: 10.1111/j.1365-313X.2005.02560.x - Liu Y., Ren D., Pike S., et al. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade // Plant J. 2007. Vol. 51. No. 6. P. 941–954. DOI: 10.1111/j.1365-313X.2007.03191.x
- Kennedy R.A., Rumpho M.E., Fox T.C. Anaerobic metabolism in plants // Plant Physiol. 1992. Vol. 100. No. 1. P. 1–6. DOI: 10.1104/pp.100.1.1
- Чиркова Т.В, Новицкая Л.О, Блохина О.Б. Перекисное окисление липидов и активность антиоксидантных систем при аноксииу растений с разной устойчивостью к недостатку
кислорода // Физиология растений. 1998. Т. 45, № 1. С. 65–73. - Chirkova T., Yemelyanov V. The study of plant adaptation to oxygen deficiency in Saint Petersburg University // Biol Commun. 2018. Vol. 63. No. 1. P. 17–31. DOI: 10.21638/spbu03.2018.104
- Шиков А.Е., Чиркова Т.В., Емельянов В.В. Постаноксия у растений: причины, последствия и возможные механизмы // Физиология растений. 2020. Т. 67, № 1. С. 50–66.
DOI: 10.31857/S0015330320010200 - Devanathan S., Erban A., Perez-Torres R., et al. Arabidopsis thaliana glyoxalase 2–1 is required during abiotic stress but is not essential under normal plant growth // PLoS ONE. 2014. Vol. 9. No. 4. P. e95971. DOI: 10.1371/journal.pone.0095971
- Blokhina O., Virolainen E., Fagerstedt K.V., et al. Antioxidant status of anoxia-tolerant and -intolerant plant species under anoxia and reaeration // Physiol Plant. 2000. Vol. 109. No. 4. P. 396–403. DOI: 10.1034/j.1399-3054.2000.100405.x
- Baxter A., Mittler R., Suzuki N. ROS as key players in plant stress signalling // J Exp Bot. 2014. Vol. 65. No. 5. P. 1229–1240. DOI: 10.1093/jxb/ert375
- Huang H., Ullah F., Zhou D.X., et al. Mechanisms of ROS regulationof plant development and stress responses // Front Plant Sci. 2019. Vol. 10. P. 800. DOI: 10.3389/fpls.2019.00800
- Van Breusegem F., Dat J.F. Reactive oxygen species in plant cell death // Plant Physiol. 2006. Vol. 141. No. 2. P. 384–390. DOI: 10.1104/pp.106.078295
- Petrov V., Hille J., Mueller-Roeber B., Gechev T.S. ROS-mediated abiotic stress-induced programmed cell death in plants // Front Plant Sci. 2015. Vol. 6. P. 69. DOI: 10.3389/fpls.2015.00069
- Apel K., Hirt H. Reactive Oxygen Species: Metabolism, oxidative stress, and signal transduction // Annu Rev Plant Biol. 2004. Vol. 55. P. 373–399. DOI: 10.1146/annurev.arplant.55.031903.141701
- Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants // Trends Plant Sci. 2004. Vol. 9. No. 10. P. 490–498. DOI: 10.1016/j.tplants.2004.08.009
- Vandenabeele S., Vanderauwera S., Vuylsteke M., et al. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana // Plant J. 2004. Vol. 39. No. 1. P. 45–58. DOI: 10.1111/j.1365-313X.2004.02105.x
- Pnueli L., Liang H., Rozenberg M., Mittler R. Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants // Plant J. 2003. Vol. 34. No. 2. P. 187–203.
DOI: 10.1046/j.1365-313X.2003.01715.x - Choudhury F.K., Rivero R.M., Blumwald E., Mittler R. Reactive oxygen species, abiotic stress and stress combination // Plant J. 2017. Vol. 90. No. 5. P. 856–867. DOI: 10.1111/tpj.13299
- Steinhorst L., Kudla J. Calcium and reactive oxygen species rule the waves of signaling // Plant Physiol. 2013. Vol. 163. No. 2. P. 471–485. DOI: 10.1104/pp.113.222950
- Zhang X., Dong F.C., Gao J.F., Song C.P. Hydrogen peroxideinduced changes in intracellular pH of guard cells precede stomatal closure // Cell Res. 2001. Vol. 11. P. 37–43. DOI: 10.1038/sj.cr.7290064
- Wang K.L., Li H., Ecker J.R. Ethylene biosynthesis and signaling networks // Plant Cell. 2002. Vol. 14. No. 1. P. S131–152. DOI: 10.1105/tpc.001768
- Ouaked F., Rozhon W., Lecourieux D., Hirt H. A MAPK pathway mediates ethylene signaling in plants // EMBO J. 2003. Vol. 22. No. 6. P. 1282–1288. DOI: 10.1093/emboj/cdg131
- Tripathy B.C., Oelmüller R. Reactive oxygen species generation and signaling in plants // Plant Signal Behav. 2012. Vol. 7. No. 12. P. 1621–1633. DOI: 10.4161/psb.22455
- Waszczak C., Carmody M., Kangasjärvi J. Reactive oxygen species in plant signaling // Annu Rev Plant Biol. 2018. Vol. 69. P. 209–236. DOI: 10.1007/978-3-642-00390-5
- Mullineaux P.M., Baker N.R. Oxidative stress: Antagonistic signaling for acclimation or cell death? // Plant Physiol. 2010. Vol. 154. No. 2. P. 521–525. DOI: 10.1104/pp.110.161406
- Viola I.L., Guttlein L.N., Gonzalez D.H. Redox modulation of plant developmental regulators from the class I TCP transcription factor family // Plant Physiol. 2013. Vol. 162. No. 3. P. 1434–1447. DOI: 10.1104/pp.113.216416
- Livanos P., Galatis B., Quader H., Apostolakos P. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana // Cytoskeleton. 2012. Vol. 69. No. 1. P. 1–21. DOI: 10.1002/cm.20538
- Daneva A., Gao Z., Van Durme M., Nowack M.K. Functions and regulation of programmed cell death in plant development // Annu Rev Cell Dev Biol. 2016. Vol. 32. P. 441–468.
DOI: 10.1146/annurev-cellbio-111315-124915 - Yi J., Moon S., Lee Y.-S., et al. Defective Tapetum Cell Death 1 (DTC1) regulates ros levels by binding to metallothionein du ring tapetum degeneration // Plant Physiol. 2016. Vol. 170. No. 3.
P. 1611–1623. DOI: 10.1104/pp.15.01561 - Ishibashi Y., Aoki N., Kasa S., et al. The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination // Front Plant Sci. 2017. Vol. 8. P. 275. DOI: 10.3389/fpls.2017.00275
- Bahin E., Bailly C., Sotta B., et al. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley // Plant Cell Environ. 2011. Vol. 34. No. 6. P. 980–993. DOI: 10.1111/j.1365-3040.2011.02298.x
- Tsukagoshi H., Busch W., Benfey P.N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root // Cell. 2010. Vol. 143. No. 4. P. 606–616. DOI: 10.1016/j.cell.2010.10.020
- Zeng J., Dong Z., Wu H., et al. Redox regulation of plant stem cell fate // EMBO J. 2017. Vol. 36. No. 19. P. 2844–2855. DOI: 10.15252/embj.201695955
- Mangano S., Denita-Juarez S.P., Choi H.-S., et al. Molecular link between auxin and ROS-mediated polar growth // Proc Natl Acad Sci USA. 2017. Vol. 114. No. 20. P. 5289–5294. DOI: 10.1073/pnas.1701536114
- Schippers J.H., Foyer C.H., van Dongen J.T. Redox regulation in shoot growth, SAM maintenance and flowering // Curr Opin Plant Biol. 2016. Vol. 29. P. 121–128. DOI: 10.1016/j.pbi.2015.11.009
- Quon T., Lampugnani E.R., Smyth D.R. PETAL LOSS and ROXY1 interact to limit growth within and between sepals but to promote petal initiation in Arabidopsis thaliana // Front Plant Sci. 2017. Vol. 8. P. 152. DOI: 10.3389/fpls.2017.00152
- Lassig R., Gutermuth T., Bey T.D., et al. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth // Plant J. 2014. Vol. 78. No. 1. P. 94–106. DOI: 10.1111/tpj.12452
- Richards S.L., Wilkins K.A., Swarbreck S.M., et al. The hydroxyl radical in plants: From seed to seed // J Exp Bot. 2015. Vol. 66. No. 1. P. 37–46. DOI: 10.1093/jxb/eru398
- Valerio L., De Meyer M., Penel C., Dunand C. Expression analysis of the Arabidopsis peroxidase multigenic family // Phytochemistry. 2004. Vol. 65. No. 10. P. 1331–1342. DOI: 10.1016/j.phytochem.2004.04.017
- Shigeto J., Itoh Y., Hirao S., et al. Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsisstem // J Integr Plant Biol. 2015. Vol. 57. No. 4. P. 349– 356. DOI: 10.1111/jipb.12334
- Laitinen T., Morreel K., Delhomme N., et al. A key role for apoplastic H2O2 in norway spruce phenolic metabolism // Plant Physiol. 2017. Vol. 174. No. 3. P. 1449–1475. DOI: 10.1104/pp.17.00085
- Lee Y., Rubio M.C., Alassimone J., Geldner N. A mechanism for localized lignin deposition in the endodermis // Cell. 2013. Vol. 153.No. 2. P. 402–412. DOI: 10.1016/j.cell.2013.02.045
- Xiong J., Yang Y., Fu G., Tao L. Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa) root tips // New Phytol. 2015. Vol. 206. No. 1. P. 118–126. DOI: 10.1111/nph.13285
- Denness L., McKenna J.F., Segonzac C., et al. Cell wall damageinduced lignin biosynthesis is regulated by a reactive oxygen speciesand jasmonic acid-dependent process in Arabidopsis // Plant Physiol. 2011. Vol. 156. No. 3. P. 1364–1374. DOI: 10.1104/pp.111.175737
- Rosenwasser S., Rot I., Sollner E., et al. Organelles contribute differentially to reactive oxygen species-related events during extended darkness // Plant Physiol. 2011. Vol. 156. No. 1. P. 185–201. DOI: 10.1104/pp.110.169797
- Zimmermann P., Heinlein C., Orendi G., Zentgraf U. Senescence- specific regulation of catalases in Arabidopsis thaliana (L.) Heynh // Plant Cell Environ. 2006. Vol. 29. No. 6. P. 1049–1060. DOI: 10.1111/j.1365–3040.2005.01459.x
- Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development // Development. 2018. Vol. 145. No. 15. ID dev164376. DOI: 10.1242/dev.164376
Выпуск
Другие статьи выпуска
Агробактериальная трансформация в природе является причиной развития заболеваний: корончатых галлов и косматых корней. Эти новообразования представляют собой трансгенные ткани на нетрансгенном растении.
Однако в природе возникают полноценные генетически модифицированные организмы, содержащие агробактериальные трансгены во всех клетках и передающие их в ряду половых поколений. Эти растения называют природно-трансгенными или природными генетически модифицированными организмами. За последние 3 года список видов при-
родных генетически модифицированных организмов был существенно расширен. Благодаря этому стало возможным сделать определенные обобщения и более предметно обсуждать возможную эволюционную роль данного явления.
Представленный мини-обзор посвящен обобщению данных относительно возможных функций генов агробактериального происхождения в геномах растений.
Пищевые добавки и, в частности, пищевые красители получают все большее распространение во всех странах.
Работа посвящена наименее изученной проблеме оценки безопасности разрешенных к применению в Российской Федерации синтетических пищевых красителей — анализу их генотоксического действия (механизмам, способам определения и результатам исследований на различных живых объектах). Приведенные в обзоре результаты полувекового изучения генотоксичности синтетических пищевых красителей показали, что среди изученных красителей нет ни одного, для которого были бы получены однозначные результаты исследований на генотоксичность, что создает уверенность в возможности их реальной мутагенной и/или канцерогенной опасности. Показано, что проблема выбора
диапазона доз при тестировании на генотоксичность, связанная с ней проблема контроля примесей, а также подходы к выбору тест-систем и тест-объектов являются ключевыми для обеспечения генетической/канцерогенной безопасности ПК. Поскольку в Российской Федерации нет единой системы оценки генетической безопасности пищевых красителей, основную задачу настоящей публикации мы видим в доказательстве насущной необходимости ее создания и очерчиванию группы основных проблем, с этим связанных.
Научно-обоснованная оценка безопасного совместного выращивания нетрансформированных и генетически модифицированных растений и, в частности, кукурузы в России пока отсутствует. В полевых модельных опытах 2020 г. впервые в условиях России (Юго-Восток Европейской части России, Саратовская область) получены экспериментальные данные о влиянии барьера из рослых гибридных растений кукурузы (Каз ЛК 178 и ES Регейн, высотой 2,15–2,90 м) между донором (Пурпурной Саратовской) и реципиентом (кукурузой лопающейся) пыльцы на частоту скрещивания.
Впервые установлено, что наличие барьерной зоны из рослых растений кукурузы полностью исключает переопыление между донором и реципиентом кукурузы с различающимися сроками цветения. При исследовании барьерных растений, как реципиентов, для установления полноценности пыльцы донора, выявлено, что процент скрещиваний на початках у барьерных растений колебался от 0,1 до 7,1 %. Основываясь на результатах модельных экспериментов, можно рекомендовать при совместном выращивании сортов кукурузы использовать сорта с различающимися сроками цветения, в сочетании с барьером для пыльцы из высокорослых гибридов кукурузы.
Цель — сравнение генетического разнообразия двух природных популяций лося из охотхозяйств пограничных областей — Костромской и Ярославской, с искусственно созданной популяцией лосефермы.
Материалы и методы. Генетическое разнообразие изучалось с помощью ДНК-маркеров, представленных девятью микросателлитным локусами, обследовано 169 особей.
Результаты. Выявлено достоверно большее генетическое разнообразие естественных популяций по сравнению с популяцией лосефермы: среднее число аллелей на локус (NA) в них составляет 9,0 и 8,6, в популяции лосефермы — 5,9. Все популяции не отличаются по уровню средней гетерозиготности. Тест на гетерогенность аллельных частот показал,
что все популяции достоверно различаются по 6 локусам и по сумме 9 локусов, природные популяции достоверно отличаются по 5 локусам, популяция лосефермы от каждой природной — по 3 одинаковым локусам. Коэффициент инбридинга значительно выше в ярославской популяции (0,167), по сравнению с костромской (0,053), в популяции лосефермы — 0,165. При выявленном потоке генов (Nm = 16,7) сохраняется генетическое своеобразие двух природных популяций, что позволяет предположить, что они не являются генетически единой популяцией.
Выводы. Выявленное резкое уменьшение генетического разнообразия популяции лосефермы указывает на необходимость обогащения ее генофонда, а обнаружение инбридинга в природных популяциях — на контроль состояния генофонда.
Издательство
- Издательство
- ЭКО-ВЕКТОР
- Регион
- Россия, Санкт-Петербург
- Почтовый адрес
- 191186, г Санкт-Петербург, Центральный р-н, Аптекарский пер, д 3 литера а, помещ 1Н
- Юр. адрес
- 191186, г Санкт-Петербург, Центральный р-н, Аптекарский пер, д 3 литера а, помещ 1Н
- ФИО
- Щепин Евгений Валентинович (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- e.schepin@eco-vector.com
- Контактный телефон
- +7 (812) 6488366