Усиление фототока лавинными фотоприемниками при микроплазменном пробое (2020)
Рассмотрены процессы усиления фототока лавинными фотоприемниками при микроплазменном пробое и показано, что возникающие при этом микроплазменные импульсы заметно влияют на величину коэффициента усиления. Предложен способ определения коэффициента усиления фототока лавинных фотоприемников при наличии микроплазменного пробоя.
Установлено, что напряжение пробоя зависит от интенсивности оптического излучения вплоть до 2,5×10-7 Вт/см2 и обосновано, что для определения коэффициента усиления фототока при напряжениях питания, больших напряжения пробоя, необходимо использовать оптические импульсы с интенсивностью большей указанной и длительностью большей или равной 10,0 мкс.
The processes of amplification of the photocurrent by avalanche photodetectors during mi-croplasma breakdown are considered, and it is shown that the microplasma pulses arising from this noticeably affect the magnitude of the gain. A method is proposed for determining the photocurrent gain of avalanche photodetectors in the presence of microplasma break-down.
It was established that the breakdown voltage depends on the intensity of optical radiation up to 2.510-7 W/cm2 and it is justified that to determine the gain of the photocurrent at supply voltages higher than the breakdown voltage, it is necessary to use optical pulses with an in-tensity greater than the specified and duration greater or equal to 10.0 μs.
Идентификаторы и классификаторы
- SCI
- Физика
- eLIBRARY ID
- 43076689
Разработан способ определения коэффициента усиления фототока лавинного фото-приемника при напряжениях питания, соответствующих микроплазменному пробою, позволяющий устранить погрешность, вносимую микроплазменными импульсами.
Установлено, что напряжение пробоя лавинных фотоприемников зависит от интенсивности оптического излучения. Для всех типов лавинных фотоприемников при интенсивностях оптического излучения больших или равных 2,510-7 Вт/см2 напряжение пробоя перестает изменяться.
Получено, что для определения коэффициента усиления фототока Ми при напряжениях питания больших напряжения пробоя необходимо использовать оптические импульсы с интенсивностью большей 2,510-7 Вт/см2 и длительностью большей или равной 10,0 мкс.
Список литературы
- Горбадей О. Ю., Зеневич А. О., Новиков Е. В., Гоибов С. А. // Успехи прикладной физики. 2019. Т. 7. № 4. С. 339.
- Гулаков И. Р., Зеневич А. О. Фотоприемники квантовых систем: монография. – Минск: УО ВГКС, 2012. – 276 с.
- Грехов И. В., Сережкин Ю. Н. Лавинный пробой p–n-перехода в полупроводниках. – Л.: Энергия, 1980.
- ГОСТ 17772-88. Приемники излучения полупроводниковые фотоэлектрические и фотоприемные устройства. Методы измерения фотоэлектрических параметров и определения характеристик – Москва: Изд-во стандартов, 1988.
- Устройство для измерения характеристик лавинного фотодиода: АС. 532064 СССР. № 2087938; заявл. 23.12.74; опубл. 15.10.76. Бюл. № 38. 2 с.
- Устройство для измерения характеристик ла-винного фотодиода: АС. 1051470 СССР. № 3473938; заявл. 16.07.1982; опубл. 30.10.1983. Бюл. № 40 2 с.
- O. Y. Gorbadey, A. O. Zenevich, E. V. Novikov, and S. A. Ghoibov, Usp. Prikl. Fiz. 7 (4), 339 (2019).
- I. R. Gulakov and A. O. Zenevich, Photodetectors of Quantum Systems (Minsk, UO VGKS, 2012) [in Russian].
- I. V. Grekhov and Yu. N. Serezhkin, Avalanche breakdown of p-n-junction in semiconductors (Leniongrad, Energiya, 1980) [in Russian].
- GOST 17772-88. Radiation receivers semiconductor photoelectric and photodetector devices. Methods for measuring photoelectric parameters and determining characteristics – Moscow: Publishing house of standards, 1988. P. 9 [in Russian].
- Device for measuring the characteristics of the av-alanche photodiode: SA. 532064 USSR. No. 2087938; declared 12.23.74; publ. 10.15.76. Bull. No. 38. P. 2
[in Russian]. - Device for measuring the characteristics of the av-alanche photodiode: SA. 1051470 USSR. No. 3473938; declared 07.16.1982; publ. 10.30.1983. Bull. No. 40. P. 2 [in Russian].
Выпуск
С О Д Е Р Ж А Н И Е
ФИЗИКА ПЛАЗМЫ И ПЛАЗМЕННЫЕ МЕТОДЫ
Гришина И. А., Иванов В. А.
Статус исследований по физике плазмы и управляемому термоядерному синтезу в России в 2019 году (Обзор материалов XLVII Международной Звенигородской конференции по физике плазмы и управляемому термоядерному синтезу», 16–20 марта 2020 г.) 89
ФОТОЭЛЕКТРОНИКА
Ваганова П. А., Яковлева Н. И.
Барьерная pBn-структура на основе GaAsSb/AlAsSb/InAsSb для детектирования ИК-излучения в диапазоне спектра 3,1–4,2 мкм 109
Асаёнок М. А., Зеневич А. О., Кочергина О. В., Новиков Е. В.
Усиление фототока лавинными фотоприемниками при микроплазменном пробое 117
ФИЗИЧЕСКОЕ МАТЕРИАЛОВЕДЕНИЕ
Гандилян С. В., Поддаева О. И., Панфилова М. И., Новоселова О. В.
Перспективы применения наноструктурного материаловедения и наноэлектрони-ки в системах электромеханических преобразователей энергии 124
ФИЗИЧЕСКАЯ АППАРАТУРА И ЕЁ ЭЛЕМЕНТЫ
Кульчицкий Н. А., Наумов А. В., Старцев В. В.
Новые тенденции развития рынка приборов на арсениде галлия 136
Полесский А. В., Соломонова Н. А.
Влияние пространственной неоднородности абсолютно черного тела на результаты измерения параметров фотоприемных устройств второго поколения «холодной» диафрагмой 148
Кондратенко В. С., Батрамеев Н. В.
Влияние геометрии электродного покрытия на параметры кварцевых резонаторов с частотами выше 125 МГц 155
C O N T E N T S
PLASMA PHYSICS AND PLASMA METHODS
I. A. Grishina and V. A. Ivanov
Status of Scientific Research on Plasma Physics and Controlled Fusion in Russia in 2019 (Review of reports of the XLVII International Zvenigorod Conference, 2020) 89
PHOTOELECTRONICS
P. A. Vaganova and N. I. Iakovleva
GaAsSb/AlAsSb/InAsSb barrier heterostructure for detection of the radiation in the spectra range of 3.1–4.2 µm 109
M. A. Asayonak, A. O. Zenevich, O. V. Kochergina, and E. V. Novikov
Photocurrent amplification by avalanche photodetectors during microplasma
breakdown 117
PHYSICAL SCIENCE OF MATERIALS
S. V. Gandilyan, O. I. Poddaeva, M. I. Panfilova, and O. V. Novoselova
Some perspective issues of application of nanostructured material science and nanoelectronics in the systems of electromechanical energy converters for special purpose 124
PHYSICAL EQUIPMENT AND ITS ELEMENTS
N. A. Kulchitsky, A. V. Naumov, and V. V. Startsev
New trends in the development of the gallium arsenide devices market 136
A. V. Polesskiy and N. A. Solomonova
The influence of blackbody spatial non-uniformity on the parameters measuring for sec-ond-generation photodetectors with a cold-stop 148
V. S. Kondratenko and N. V. Batrameev
Study of the influence of the configuration of electrode coating on the parameters of high-frequency quartz resonators in frequency range above 125 MHz 155
Другие статьи выпуска
В ходе исследования влияния геометрии электродного покрытия на параметры высокочастотных кварцевых резонаторов в металлокерамических корпусах SMD (surface mounted device – прибор для поверхностного монтажа) на частоты свыше 125 МГц, экспериментально была подобрана оптимальная форма и толщина электродного покрытия. В процессе работы было выявлено оптимальное сочетание толщины и диаметра электрода. При толщине круглого алюминиевого электрода, равной 0,2 мкм, диаметр активного электрода следует выбирать в пределах от 20 до 35 толщин рабочей области.
В статье рассмотрен вопрос влияния неравномерности распределения температуры по излучающей поверхности АЧТ при проведении измерений параметров ФПУ второго поколения с «холодной» диафрагмой. В результате проведенных исследований выявлена необходимость проведения дополнительных проверок АЧТ с большой излучающей поверхностью при их использовании для контроля параметров ФПУ второго поколения с «холодными» диафрагмами.
В работе обсуждается современное состояние технологии получения, а также особенности мирового рынка арсенида галлия, дан анализ тенденций его развития. Рассмотрены особенности различных технологий выращивания кристаллов арсенида галлия; проведен анализ характеристик получаемых материалов, приборов на их основе, а также основных производителей.
В работе дан краткий обзор современного состояния электромеханической науки. Анализируются широкие спектры практического применения и перспективы дальнейшего развития её совершенно нового направления – микросистемной электромеханики. Рассмотрены некоторые перспективные направления применения новейших достижений нанонауки и наноструктурного материаловедения электротехнического назначения в тех отраслях жизнедеятельности человека (от медицинской робототехники до средств освоения космоса), в которых сегодняшний научно-технический и технологический прогресс базируется на комплекcном применении электромеханических преобразователей энергии специального назначения и их систем. Подробно обсуждаются два основных пути создания микроминиатюрных и наноэлектромеханических преобразователей энергии, как базовых элементов микросистемной электромеханики: «сверху вниз» и «снизу вверх». Описаны основные технологические приемы конструирования базовых функциональных элементов микросистемной электромеханики, охарактеризованы области их применения в традиционной и новой технике (информационных и ком-пьютерных технологиях, медицине, в аэрокосмических и системах и т. д.).
В работе исследована новая рBn-архитектура на основе гетероструктуры GaAsSb/AlAsSb/InAsSb группы материалов A3B5, с барьерным слоем AlAsSb n-типа, поглощающим слоем InAsSb n-типа, коллекторным слоем GaAsSb р-типа проводи-мости, предназначенная для детектирования излучения в ИК-диапазоне спектра 3,1–4,2 мкм. У представленной структуры не имеется разрыва в валентной зоне, что позволяет работать в широком диапазоне напряжений смещения, не обедняя базовый активный слой InAsSb n-типа. Барьер в зоне проводимости, благодаря наличию в структуре широкозонного слоя AlAsSb составляет 1,0 эВ, что достаточно для блокирования электронной составляющей тока. Проведен анализ темновых токов и основных параметров рBn-структуры, получено, что при рабочей повышенной температуре Т 150 К и плотности темнового тока J 610-10 А/см2 значение обнаружительной способности достигает значения D* 2,51012 (см Вт-1Гц1/2).
Дан обзор новых наиболее интересных результатов, представленных на ежегодной XLVII Международной Звенигородской конференции по физике плазмы и управляемому термоядерному синтезу, состоявшейся с 16 по 20 марта 2020 года в городе Звенигороде Московской области. Проведен анализ развития и достижений основных направлений исследований в области физики плазмы в России и их сравнение с работами за рубежом.
Издательство
- Издательство
- АО "НПО "ОРИОН"
- Регион
- Россия, Москва
- Почтовый адрес
- 111538, г Москва, р-н Вешняки, ул Косинская, д 9
- Юр. адрес
- 111538, г Москва, р-н Вешняки, ул Косинская, д 9
- ФИО
- Старцев Вадим Валерьевич (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- orion@orion-ir.ru
- Контактный телефон
- +7 (499) 3749400