-
Butte N. F., Ekelund U., Westerterp K. R. Assessing physical activity using wearable monitors: measures of physical activity // Medicine and science in sports and exercise. 2012. Vol. 44, № 1, suppl. l. P. S5-S12. https://doi.org/10.1249/MSS.0b013e3182399c0e
-
Видеоанализ движений человека в клинической практике (обзор) / В. В. Борзиков, Н. Н. Рукина, О. В. Воробьева, А. Н. Кузнецов, А. Н. Белова // Современные технологии в медицине. 2015. Т. 7, № 4. С. 201-210. https://doi.org/10.17691/stm2015.7.4.26
-
Insafutdinov E., Dosovitskiy A. Unsupervised learning of shape and pose with differentiable point clouds // Proc. of the 32nd Intern. Conf. on Neural Information Processing Systems. Montreal. 2018. P. 2807-2817. URL: https://dl.acm.org/doi/10.5555/3327144.3327204 (дата обращения 19.02.2024)
-
DeepCut: Joint subset partition and labeling for multi person pose estimation / L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. Gehler, B. Schiele // Proc. of IEEE Conf. on Computer Vision and Pattern Recognition. 2016. P. 4929-4937. https://doi.org/10.1109/CVPR.2016.533
-
A deep learning-based toolbox for Automated Limb Motion Analysis (ALMA) in murine models of neurological disorders / A. Aljovic, S. Zhao, M. Chahin, C. de la Rosa, V. van Steenbergen, V. Kerschensteiner, F. M. Bareyre // Communications biology. 2022. Vol. 5, № 1. Art. 131. https://doi.org/10.1038/s42003-022-03077-6
-
Video-based marker-free tracking and multi-scale analysis of mouse locomotor activity and behavioral aspects in an open field arena: a perspective approach to the quantification of complex gait disturbances associated with Alzheimer’s disease / M. Bogachev, A. Sinitca, K. Grigarevichius, N. Pyko, A. Lyanova, M. Tsygankova, E. Davletshin, K. Petrov, T. Ageeva, S. Pyko, D Kaplun, A. Kayumov, Ya. Mukhamedshina // Frontiers in Neuroinformatics. 2023. Vol. 17, № 2. P. 110-112. https://doi.org/10.3389/fninf.2023.1101112
-
Switonski A., Josinski H., Wojciechowski K. Dynamic time warping in classification and selection of motion capture data // Multidimensional Systems and Signal Processing. 2019. Vol. 30, № 6. P. 1437-1468. https://doi.org/10.1007/s11045-018-0611-3
-
Network physiology: how organ systems dynamically interact / R. P. Bartsch, L. Kang, A. Bashan, P. Ch. Ivanov // PloS one. 2015. Vol. 10, № 11. Art. e0142143. https://doi.org/10.1371/journal.pone.0142143
-
Bartsch R. P., Ivanov P. Ch. Coexisting forms of coupling and phase-transitions in physiological net-works // Communications in computer and information science. 2014. Vol. 438. P. 270-287. https://doi.org/10.1007/978-3-319-08672-9_33
-
Conditional entropy approach for the evaluation of the coupling strength / A. Porta, G. Baselli, F. Lombardi, N. Montano, A. Malliani, S. Cerutti // Biological Cybernetics. 1999. Vol. 81, № 2. P. 119-129. https://doi.org/10.1007/s004220050549
-
Assessment of cooperativity in complex systems with non-periodical dynamics: comparison of five mutual information metrics / N. S. Pyko, S. A. Pyko, O. A. Markelov, A. I. Karimov, D. N. Butusov, Y. V. Zolotukhin, Y. D. Uljanitski, M. I. Bogachev // Physica A: Statistical mechanics and its applications. 2018. Vol. 503, № 6. P. 1054-1072. https://doi.org/10.1016/j.physa.2018.08.146
-
Understanding the complex interplay of persistent and antipersistent regimes in animal movement trajectories as a prominent characteristic of their behavioral pattern profiles: Towards an automated and robust model based quantification of anxiety test data / M. I. Bogachev, A. I. Lyanova, A. M. Sinitca, S. A. Pyko, N. S. Pyko, A. V. Kuzmenko, S. A. Romanov, O. I. Brikova, M. Tsygankova, D. Y. Ivkin, S. V. Okovityi, V. A. Prikhodko, D. I. Kaplun, Y. I. Sysoev, A. R. Kayumov // Biomedical signal processing and control. 2023. Vol. 81, № 3. Art. 104409. https://doi.org/10.1016/j.bspc.2022.104409
-
Bunde A., Havlin S. A brief introduction to fractal geometry. Fractals in science. Berlin, Heidelberg: Springer, 1994. 26 p. https://doi.org/10.1007/978-3-642-77953-4_1
-
Kasdin N. J. Discrete simulation of colored noise and stochastic processes and 1/f/sup/spl alpha//power law noise generation // Proc. of the IEEE. 1995. Vol. 83, iss. 5. P. 802-827. https://doi.org/10.1109/5.381848
-
Hanea A. M., Kurowicka D., Cooke R. M. Hybrid method for quantifying and analyzing Bayesian belief nets // Quality and Reliability Engineering International. 2006. Vol. 22, № 6. P. 709-729. https://doi.org/10.1002/qre.808