CFAR-обнаружитель цели в радиолокаторе с синтезированной апертурой (2024)
Введение. Обнаружители с постоянным уровнем ложной тревоги (CFAR-обнаружители) нашли применение в радиолокаторах с синтезированной апертурой. Принцип работы классического CA-CFAR-обнаружителя основан на сравнении решающей статистики в тестируемом элементе разрешения с адаптивным порогом, который вычисляется по сигналам в контрольных элементах. В качестве решающей статистки используется оценка мощности сигнала, поэтому обнаружение сигнала цели основано на яркостном контрасте тестируемого и контрольных элементов разрешения. Такой обнаружитель является оптимальным, если помеховый фон однороден. При нарушении однородности фона качество обнаружения снижается. Известны несколько способов улучшения качества обнаружения (GO-CFAR, SO-CFAR, OS-CFAR и др.). Однако сам принцип обнаружения по яркостному контрасту в таких CFAR-обнаружителях остается неизменным.
Цель работы. Синтезировать CFAR-обнаружитель, который использует для обнаружения не только яркостный контраст между тестируемым и контрольными элементами разрешения, но и спектральные отличия сигналов.
Материалы и методы. В предлагаемом CFAR-обнаружителе используются оценки алгебраических моментов спектральной плотности мощности сигналов в элементах разрешения по дальности, на основе которых вычисляются 3 решающие статистики, содержащие информацию о мощности, положении энергетического центра и ширине спектра сигнала . Решение о присутствии цели в тестируемом элементе разрешения осуществляется по правилу “2/3” (2 превышения порога из трех проверок).
Результаты. Сравнение предлагаемого обнаружителя с SO-CFAR-обнаружителем с помощью компьютерного моделирования показало, что при отношении сигнал/помеха -6 дБ и вероятности ложной тревоги 10-4 вероятность правильного обнаружения предлагаемого обнаружителя составляет 0.933 против 0.708 у SO-CFAR-обнаружителя.
Заключение. Предложен трехпараметрический CFAR-обнаружитель цели для радиолокатора с синтезированной апертурой, в котором решение о присутствии цели принимается на основе оценки трех алгебраических моментов сп
Идентификаторы и классификаторы
Обнаружители с постоянным уровнем ложной тревоги (ЛТ) (Constant False Alarm Rate – CFAR) нашли в настоящее время широкое применение в радиолокационных системах, которые работают в условиях мощных пассивных помех с априорно неизвестной средней мощностью. В этих системах фиксация уровня ЛТ происходит за счет выделения тестируемого элемента разрешения (ячейки) по дальности, для которого решается задача обнаружения полезного сигнала, и измерения средней мощности сигнала в контрольных элементах разрешения (ячейках), окружающих тестируемый элемент. Структурная схема классического CFAR-обнаружителя представлена на рис. 1 [1].
CFAR-обнаружитель работает следующим образом. Сигнал с выхода согласованного
фильтра приемника поступает на вход квадратического детектора. Продетектированный сигнал – оценка мгновенной мощности – поступает на вход регистра памяти, общее число ячеек в котором равно 2 1, n + где n – целое число, выбираемое таким образом, чтобы обеспечить заданную вероятность ЛТ обнаружителя F.
Список литературы
-
Gandhi P. P., Kassam S. A. Analysis of CFAR processors in non-homogeneous background // IEEE Transactions on Aerospace and Electronic Systems. 1988. Vol. 24, № 4. P. 427-445. https://doi.org/10.1109/7.7185
-
Finn H. M., Johnson R. S. Adaptive detection mode with threshold control as a function of spatially sampled clutter level estimates // RCA Review. 1968. Vol. 29. P. 414-468.
-
Moore J. D., Lawrence N. B. Comparison of two CFAR methods used with square law detection of Swerling I targets // Proc. of the IEEE Intern. Radar Conf., Arlington, VA, Apr. 1980. P. 403-409.
-
Weiss M. Analysis of some modified cell-averaging CFAR processors in multiple-target situations // Transactions on Aerospace and Electronic Systems. 1982. Vol. I8, № 1. P. 102-113. https://doi.org/10.1109/taes.1982.309210
-
Hansen V. G. Constant false alarm rate processing in search radars // Proc. of the IEEE Intern. Radar Conf., London, UK, 1973. P. 325-332.
-
Trunk G. V. Range resolution of targets using automatic detectors // IEEE Transactions on Aerospace and Electronic Systems. 1978. Vol. 14, № 5. P. 750¬755. https://doi.org/10.1109/TAES.1978.308625
-
Rohling H. Radar CFAR thresholding in clutter and multiple target situations // IEEE Transactions on Aerospace and Electronic Systems. 1983. Vol. 19, № 4. P. 608-621. https://doi.org/10.1109/taes.1983.309350
-
Hansen V. G., Sawyers. J. H. Detectability loss due to greatest of selection in a cell-averaging CFAR // IEEE Transactions on Aerospace and Electronic Systems. 1980. Vol. 16, № 1. P. 115-118. https://doi.org/10.1109/taes.1980.308885
-
Target detection in synthetic aperture radar imagery: a state-of-the-art survey / K. El-Darymli, P. McGuire, D. Power, C. R. Moloney // J. of Applied Remote Sensing. 2013. Vol. 7. P. 1-35. https://doi.org/10.1117/1.jrs.7.071598
-
Automatic Target Recognition in Synthetic Aperture Radar Imagery: A State-of-the-Art Review / K. El-Darymli, P. McGuire, D. Power, C. R. Moloney // IEEE Access. 2016. Vol. 4. P. 6014-6058. https://doi.org/10.1109/ACCESS.2016.2611492
-
A New Two Parameter CFAR Ship Detector in Log-Normal Clutter / J. Ai, X. Yang, Z. Dong, F. Zhou, L. Jia // IEEE Radar Conf. Seattle, WA, USA, 08-12 May 2017. IEEE, 2017. P. 195-199. https://doi.org/10.1109/RADAR.2017.7944196
-
Goldstein G. B. False-Alarm Regulation in Log-Normal and Weibull Clutter // IEEE Transactions on Aerospace and Electronic Systems. 1973. Vol. AES 9, № 1. P. 84-92. https://doi.org/10.1109/TAES.1973.309705
-
Kuttikkad S., Chellappa R. Non-Gaussian CFAR Techniques for Target Detection in High Resolution SAR Images // Proc. of the IEEE Intern. Conf. on Image Processing, Austin, Texas, USA, 13-16 Nov. 1994. IEEE, 1994. P. 910-914. https://doi.org/10.1109/icip.1994.413444
-
Smith M. E., Varshney P. K. Intelligent CFAR processor based on data variability // IEEE Transactions on Aerospace and Electronic Systems. 2000. Vol. 36, № 3. P. 837-847. https://doi.org/10.1109/7.869503
-
A novel variable index and excision CFAR based ship detection method on SAR imagery / K. Ji, X. Xing, H. Zou, J. Sun // J. of Sensors. 2015. Vol. 2015. Art. ID 437083. https://doi.org/10.1155/2015/437083
-
Wang L., Wang D., Hao C. Intelligent CFAR Detector Based on Support Vector Machine // IEEE Access. 2017. Vol. 5. P. 26965-26972. https://doi.org/0.1109/ACCESS.2017.2774262
-
Pham Q. H., Brosnan T. M., Smith J. M. Multi¬stage algorithm for detection of targets in SAR image data // Proc. of the SPIE. 1997. Vol. 3070. P. 66-75. https://doi.org/10.1117/12.281583
-
Multiresolution detection of coherent radar targets / N. S. Subotic, B. J. Thelen, J. D. Gorman, M. F. Reiley // IEEE Transactions on Image Processing. 1997. Vol. 6, № 1. P. 21-35. https://doi.org/10.1109/83.552094
-
Kaplan L. M., Murenzi R., Namuduri K. R. Extended Fractal Feature for First-Stage SAR Target Detection // Proc. of the SPIE. 1999. Vol. 3721. P. 35-46. https://doi.org/10.1117/12.357684
-
Kaplan L. M. Improved SAR target detection via extended fractal features // IEEE Transactions on Aerospace and Electronic Systems. 2001. Vol. 37, № 2. P 436-451. https://doi.org/10.1109/7.937460
-
Hatem G. M., Sadah J. W., Saeed T. R. Com-parative Study of Various CFAR Algorithms for Non-Homogenous Environments // IOP Conf. Ser. Materials Science and Engineering, Kerbala, Iraq, 26-27 March 2018. Vol. 433. Art. num. 012080. https://doi.org/10.1088/1757-899x/433/1/012080
-
Novak L. M., Burl M. C., Irving W. W. Optimal Polarimetric Processing for Enhanced Target Detection // IEEE Transactions on Aerospace and Electronic Systems. 1993. Vol. 29, № 1. P. 234-244. https://doi.org/10.1109/7.249129
-
Монаков А. А. Наблюдение пространственно-протяженных целей в радиолокационных системах с фазированными антенными решетками // Радиотехника. 1999. Т. 63, № 3. С. 3-9.
-
Monakov A. A. Radar Observation of Extended Targets with Antenna Arrays // IEEE Transactions on Aerospace and Electronic Systems. 2000. Vol. 36, № 1. P. 297-302. https://doi.org/10.1109/7.826333
-
Монаков А. А. Оценка алгебраических моментов спектра случайных процессов в задачах радиолокации протяженных целей // Успехи современной радиоэлектроники. 2006. Т. 60, № 10. С. 36-50.
-
Монаков А. А., Монаков Ю. А. Наблюдение турбулентных атмосферных областей в бортовых метеорологических радиолокаторах: измерение параметров турбулентности // Успехи современной радиоэлектроники. 2012. Т. 66, № 5. С.14-28.
-
Марпл-мл. С. Л. Цифровой спектральный анализ и его приложения / пер. с англ. М.: Мир, 1990. 584 с.
Выпуск
Другие статьи выпуска
Введение. Изучение двигательной активности (ДА) актуально в рамках биомедицинских и фармакологических исследований, а также в задачах экологического мониторинга. Траектории движения биологических объектов представляются временными рядами, обладающими многокомпонентной структурой и нестационарной динамикой, что ограничивает эффективность классических спектрально-корреляционных методов. При регистрации ДА с помощью безмаркерных технологий типично наблюдается повышенный уровень шумов, включающих как инструментальные погрешности, так и аномальные ошибки, связанные с ложными оценками местоположения точки в кадре или с пропаданием фрагментов траекторий, что обусловливает актуальность разработки робастных методов оценивания характеристик ДА.
Цель работы. Разработка робастных методов оценивания характеристик ДА в биотехнических системах, устойчивых в условиях типичных искажений, возникающих при восстановлении траекторий по данным безмаркерных телевизионных наблюдений.
Материалы и методы. Для оценки характеристик ДА анализировалось взаимное движение частей тела лабораторных животных с использованием мер стабильности взаимного поведения траекторий, запаздывания одной траектории по отношению к другой и доли фрагментов стабильного взаимного поведения траекторий в общей длительности записи. В качестве метрик взаимной динамики использованы максимумы взаимной корреляционной функции между двумя фрагментами траекторий и минимумы среднеквадратического отклонения разности их мгновенных фаз, а также их временные положения.
Результаты. Установлено, что рассмотренные фазовые метрики чувствительны к изменениям ДА, однако оценка временных задержек в модели движения сопряжена с наличием череспериодной ошибки. При использовании корреляционных метрик указанное ограничение может быть в значительной степени преодолено, что обусловливает целесообразность комплексирования указанных метрик.
Заключение. Предложенные робастные методы позволяют получить устойчивые оценки характеристик ДА по данным безмаркерной телевизионной регистрации
Введение. Проведение производственного радиационного контроля источников импульсного тормозного излучения сопряжено с рядом проблем. В России существует всего 3 дозиметра, предназначенных для дозиметрии импульсного тормозного излучения с длительностью импульса менее 10 мкс. К тому же они имеют ряд существенных ограничений по энергетическому диапазону (10 МэВ) и минимальной длительности импульсов (10 нс) и достаточно высокую стоимость. При этом имеется дозиметр ДКГ-РМ1621 со счетчиком Гейгера-Мюллера для дозиметрии фотонного излучения с энергий до 20 МэВ, но он не предназначен для дозиметрии импульсных излучений.
Цель работы. Разработка методики проведения радиационного контроля источников импульсного тормозного излучения с использованием дозиметров со счетчиками Гейгера-Мюллера.
Материалы и методы. В 2021 г. проведены измерения мощности дозы импульсного тормозного излучения с максимальной энергией 3.0 МэВ при частоте следования импульсов 50, 100, 150, 200, 250, 300 и 400 Гц дозиметрами ДКС-АТ1123 (в качестве образцового) и МКС-АТ117М со счетчиком Гейгера-Мюллера.
Результаты. Разработана методика корректировки результатов измерений мощности дозы импульсного тормозного излучения дозиметром со счетчиком Гейгера-Мюллера, позволяющая измерять мощность дозы импульсного тормозного излучения с дополнительной погрешностью менее 15 % в практически значимой области мощностей доз. Для дозиметра МКС-АТ117М при частоте следования импульсов 400 Гц данное значение составило 320 мкЗв/ч, что вполне достаточно для большинства практических задач по радиационному контролю.
Заключение. Показана целесообразность и возможность успешного применения дозиметров со счетчиками Гейгера-Мюллера для дозиметрии импульсного тормозного излучения с использованием предложенной методики измерений с ограничением по максимально измеряемой мощности дозы.
Введение. Программные средства компьютерной симуляции и прототипирования позволяют значительно упростить процесс проектирования сложных информационно-измерительных систем, в том числе радиолокационных систем (РЛС) и комплексов. В настоящее время существует множество программных пакетов, позволяющих в той или иной степени решать данные задачи. Однако данные программные пакеты либо являются универсальными и не учитывают специфику работы РЛС, что требует собственноручной реализации математических моделей для симуляции радиолокационных сигналов, либо позволяют решать узкий спектр задач прототипирования и разработки алгоритмов обработки радиолокационной информации для строго определенного типа (или даже конкретной модели) радиолокатора. Некоторые из программных пакетов, например MATLAB, предлагают пакеты расширений, позволяющие производить симуляцию радиолокационных сигналов с учетом радиолокационной обстановки для автомобильных радаров, а также обработку сигналов РЛС, тем не менее, не покрывая полного спектра задач симуляции и прототипирования.
Цель работы. Анализ актуальных программных пакетов для симуляции и прототипирования радиолокационных систем и комплексов, обоснование востребованности и разработка концепта и архитектуры программного комплекса симуляции и прототипирования радиолокационных систем и комплексов.
Материалы и методы. Системный подход, архитектурное и концептуальное проектирование программного обеспечения, системный анализ, критериальный анализ.
Результаты. Определены критерии, которым должен соответствовать программный комплекс симуляции и прототипирования радиолокационных систем и комплексов. Произведен сравнительный анализ существующих подходов и программных пакетов, позволяющих решать задачи, возникающие на различных этапах разработки РЛС. Составлен список требований, предъявляемых к программному комплексу, разработаны его концепт, архитектура и определены некоторые особенности его реализации.
Заключение. Разработанная архитектура позволяет создать универсальный программный комплекс,
Введение. Радиолокационные изображения винтов летательных аппаратов позволяют существенно улучшить качество решения задач распознавания и защиты от имитирующих помех. Эти изображения могут быть получены с использованием алгоритмов, основанных на обращенном синтезе апертуры антенны. Ключевым фактором, определяющим качество получения изображений, является точность измерения частоты следования лопастей винта. В 2019 г. предложен способ измерения частоты следования лопастей, основанный на свертке спектра “вторичной” модуляции сигнала с одновременным устранением влияния доплеровской частоты сигнала, отраженного от корпуса летательного аппарата. В основе способа лежит циклически повторяющаяся процедура свертки сигнала. При последовательном анализе количество циклов определяется отношением максимального значения частоты следования лопастей (сотни герц) к дискретному частотному сдвигу (тысячные доли герца). В этом случае для решения задачи измерения требуемое количество циклов составляет сотни тысяч, что приводит к дорогостоящей практической реализации.
Цель работы. Разработка способа двухэтапного измерения частоты следования лопастей, позволяющего сократить количество циклов свертки сигнала в сотни раз.
Материалы и методы. Предлагаемый способ направлен на реализацию цепей адаптации к априорно неизвестной частоте вращения винта летательного аппарата, которую можно определить исходя из частоты следования лопастей. Способ предполагает измерение частоты следования лопастей в 2 этапа: на первом этапе выполняется грубое измерение частоты следования лопастей, а на втором - точное измерение в пределах максимальных ошибок грубого измерения.
Результаты. Разработан способ двухэтапного измерения частоты следования лопастей в приложении к построению радиолокационных изображений винтов летательных аппаратов. Работоспособность способа иллюстрируется на примере сигнала, отраженного от вертолета Ми-8. Сформировано требование к ошибке измерения частоты следования лопастей и к шагу анализа по частоте на этапе точного измерения. О
При эксплуатации антенн для различных радиоэлектронных систем актуальным является учет влияния отказов фазовращателей (ФВ) на характеристики фазированных антенных решеток, в частности волноводно-щелевой фазированной антенной решетки (ВЩФАР). Анализ публикаций показывает, что ситуации выхода из строя указанных элементов рассмотрены не в полной мере и исследования в этом направлении носят весьма ограниченный характер. В статье предложен алгоритм статистического моделирования влияния отказов на характеристики ВЩФАР. Приведено соотношение, связывающее диаграмму направленности с объемом статистической выборки и количеством ФВ, вышедших из строя.
Цель работы. Исследование характеристик ВЩФАР при отказах ФВ, когда их фаза принимает значение с дискретом 22.5° вместо требуемого значения.
Материалы и методы. При исследовании влияния отказов на характеристики ВЩФАР использовались методы статистического моделирования. Расчеты проводились на ЭВМ с помощью пакета прикладной математики Mathcad 15.
Результаты. В ходе исследований предложен алгоритм статистического моделирования влияния отказов на характеристики ВЩФАР. Приведено соотношение, связывающее диаграмму направленности с объемом статистической выборки и количеством ФВ, вышедших из строя. Исследовались неисправности излучателей от 5 до 35 из 50 элементов. Получено изменение следующих характеристик: среднеквадратическое отклонение - от 0.047 до 0.13; относительные значения: ширина диаграммы направленности - от 9 до 32 %; уровень боковых лепестков - от 13 до 72 %; мощность излучения - от 0.9 до 0.31.
Заключение. Полученные результаты исследований могут быть обобщены и использованы в радиоэлектронных системах с антенными решетками на этапе их разработки. Следующим направлением работы авторы считают исследование влияния отказов ФВ, при котором мощность не проходит в излучатель. Другим важным направлением является компенсация искажений в результате отказов антенных элементов.
В настоящее время вопрос реализации двухдиапазонного режима работы директорных дипольных антенн представлен широким рядом работ, практически все из которых посвящены изучению свойств классического диполя с центральным типом возбуждения. В то же самое время вопрос концевого возбуждения излучателей для двухдиапазонных директорных антенн остается открытым. Проектирование таких излучателей требует глубокого анализа с точки зрения разработки как математических, так и электродинамических моделей (топологий), соответствующих тактико-техническим требованиям современных цифровых антенных решеток. Компоновка излучателей с концевым возбуждением для двухдиапазонных приложений дает возможность решить ряд технологических задач, связанных с размещением дополнительных радиотехнических элементов на излучающем модуле.
В условиях глобализации транспортировка нефтепродуктов танкерным флотом становится одной из причин возникновения техногенных катастроф в акваториях морей и океанов. В таких условиях важную роль играет экологический мониторинг, обеспечивающий своевременное выявление результатов техногенных катастроф. Указанная задача решается с помощью распознавания образов, полученных с беспилотных летательных аппаратов, предполагающего отбор только того фото- и видеоконтента, на котором запечатлены следы техногенных аварий или результаты их последствий.
При изготовлении печатных плат (ПП), в том числе их макетов, одной из важных задач является обеспечение совмещения одних слоев проводящего рисунка с другими. Если для применяемых на сегодняшний день (стандартных) технологий изготовления величины рассовмещений, причины их возникновения и меры предотвращения их возникновения известны, то для ПП, изготовленных методами 3D-печати, подобные исследования прежде не проводились. В дополнение к этому актуальной темой для 3D-печати, непосредственно связанной с топологической точностью, а именно одной из ее составляющих - погрешностью совмещения, является обеспечение возможности извлечения напечатанной части изделия во время печати для проведения определенных операций, например внутреннего монтажа компонентов, и ее последующий возврат для продолжения печати.
Издательство
- Издательство
- ЛЭТИ
- Регион
- Россия, Санкт-Петербург
- Почтовый адрес
- 197022, улица Профессора Попова, дом 5, литера Ф.
- Юр. адрес
- 197022, улица Профессора Попова, дом 5, литера Ф.
- ФИО
- Шелудько Виктор Николаевич (РЕКТОР)
- E-mail адрес
- rector@etu.ru
- Контактный телефон
- +7 (812) 2344651
- Сайт
- https://etu.ru