Исследуются вопросы разрешимости нелинейных обратных задач с зависящим от времени неизвестным элементом для эволюционных уравнений в банаховых пространствах с производными Герасимова - Капуто. Получена теорема о существовании единственного гладкого решения нелинейной задачи для разрешённого относительно старшей дробной производной уравнения с ограниченным оператором в линейной части. Она использована при исследовании вырожденных эволюционных уравнений при условии p-ограниченности пары операторов в линейной части уравнения - при старшей производной и при искомой функции. В случае действия нелинейного оператора в подпространство без вырождения доказано существование единственного гладкого решения, а при независимости нелинейного оператора от элементов подпространства вырождения показано существование единственного обобщённого решения. Полученные абстрактные результаты для вырожденных уравнений использованы при исследовании обратной задачи для модифицированной системы уравнений Соболева с неизвестными коэффициентами при младших дробных производных по времени.
Получены условия на линейный замкнутый оператор в терминах расположения его резольвентного множества и оценок на его резольвенту и её производные, необходимые и достаточные для порождения этим оператором сильно непрерывного разрешающего семейства операторов. Доказаны некоторые свойства таких разрешающих семейств, получена теорема об однозначной разрешимости задачи Коши для соответствующего линейного неоднородного уравнения. Полученные результаты использованы для доказательства однозначной разрешимости начально-краевых задач для уравнений с многочленами от самосопряжённого эллиптического дифференциального по пространственным переменным оператора и с распределённой производной по времени.