В работе электроэрозионным диспергированием сплава Т5К10 в масле получен порошок, который был нанесен на заготовки из стали 35 методом электроискрового легирования нелокализованным электродом, исследованы состав, структура и свойства полученных покрытий. Определены химический и фазовый составы и микроструктура полученных частиц. Установлено, что при электроэрозионном диспергировании в образующихся частицах порошка происходит полное растворение исходного карбида вольфрама в кубическом карбиде (Ti, W)C. Исследования кинетики массопереноса при электроискровом легировании нелокализованным электродом показали, что полученный порошок наносится вместе со стальными гранулами со скоростью 1,9-2,6 мг/(см2×мин). Полученные покрытия состоят из вольфрам-содержащих и железосодержащих фаз, элементы которых равномерно распределены по глубине покрытия. Концентрация элементов W, Ti, Co в покрытиях зависит от соотношения масс порошка и стальных гранул в наносимом порошке. Испытания показали, что, благодаря высокой концентрации легирующих элементов в покрытиях, они обладают высокой твердостью (6,4 ГПа-9,2 ГПа) и пониженной скоростью износа (0,13×105-0,39×105 мм3/Нм) по сравнению с исходной сталью 35 (2,6 ГПа и 2,47×105-2,65×105 мм3/Нм соответственно).
Покрытия на основе Ti-WSi способны обеспечить жаростойкость конструкционных материалов, а также устойчивость к коррозии и изнашиванию. Методом электроискрового легирования титанового сплава Ti6Al4V в анодной смеси из титановых гранул c добавлением 2, 6 и 10 об. % порошка дисилицида вольфрама получены металлокерамические Ti-WSi покрытия. Структуру покрытий изучали методами ренгенофазового анализа, растровой электронной микроскопии и микрорентгеноспектрального анализа. Испытания на жаростойкость проводились при температуре 900 °С в течении 100 часов. Износостойкость покрытий исследовались в условиях сухого трения при нагрузке 25 Н. По данным рентгенофазового анализа в составе покрытий присутствуют низкотемпературный WSi2, αTi, Ti5Si3 и высокотемпературный WSi2. С ростом содержания WSi2 в анодной смеси микротвердость покрытий монотонно возрастала с 11,93 до 13,24 ГПа. Средние значения коэффициента трения покрытий находились в диапазоне от 0,75 до 0,86. По результатам испытаний, износостойкость покрытий была от 3 до 7 раз выше, чем у сплава Ti6Al4V. Применение электроискровых Ti-WSi покрытий позволяет повысить жаростойкость титанового сплава Ti6Al4V от 7 до 14 раз.