Методами просвечивающей электронной дифракционной микроскопии выполнен анализ структуры, фазового состава, дислокационной субструктуры в головке длинномерных дифференцированно закаленных рельсов специального назначения из стали Э90ХАФ после пропущенного тоннажа 187 млн. тонн брутто. Исследования проведены вдоль центральной оси и радиуса скругления выкружки на поверхности и на расстоянии 10 мм от нее. Установлено, что структура стали представлена зернами пластического перлита и феррито-карбидной смеси с частицами карбида пластической и глобулярной морфологии. Выявлена фрагментация пластин цементита (размеры фрагментов 10-12 нм) и феррита (размеры фрагментов 250-500 нм). Отмечено формирование изгибных контуров экстинкции, свидетельствующих об упруго-напряженном состоянии головки рельсов в результате длительной эксплуатации. Выявлены источники кривизны-кручения кристаллической решетки- внутрифазные (границы раздела зерен перлита) и межфазные (границы раздела пластин феррита и цементита перлитных колоний) границы. Формирующаяся структура на поверхности катания отличается от структуры поверхности выкружки. В последней не выявляется субзеренной структуры. Проведено сравнение деформационного преобразования поверхностных слоев с ранее опубликованными результатами для рельсов общего назначения из доэвтектоидной стали. Рассмотрены механизмы разрушения пластин цементита и повторного выделения частиц наноразмерной карбидной фазы округлой формы (третичный цементит). Проведено сравнение скалярной плотности дислокационной субструктуры поверхности катания по центральной оси и радиусу скругления выкружки.
Используя метод проволочно-дугового аддитивного производства (WAAM-wire arc additive manufacturing) на подложке из алюминиевого сплава 5083, было сформировано покрытие из высокоэнтропийного сплава (ВЭС) Mn-Cr-Fe-Co-Ni неэквиатомного состава. Методами сканирующей и просвечивающей электронной микроскопии выполнен анализ структуры, фазового и элементного состава зоны контакта после облучения низкоэнергетическими электронными пучками с параметрами: плотность энергии пучка электронов 30 Дж/см2, длительность импульса 200 мкс, количество импульсов 3, частота следования импульсов 0,3 Гц. Выявлено образование многофазной многоэлементной субмикро- нанокристаллической структуры, сформированной преимущественно в подложке, которая имеет более низкую температуру плавления по сравнению c ВЭС. Установлено, что контактные слои, примыкающие к подложке и покрытию, имеют структуру высокоскоростной ячеистой кристаллизации. В слое, примыкающем к подложке, ячейки образованы твердым раствором магния в алюминии. По границам ячеек выявлены прослойки второй фазы, обогащенные атомами покрытия и подложки. В слое, примыкающем к покрытию, ячейки сформированы сплавом состава 0,17Mg-20,3Al-4,3Cr-16,7Fe-9,3Co-49,2Ni. По границам ячеек выявлены прослойки второй фазы, обогащенные преимущественно магнием и атомами покрытия. Центральная область зоны контакта толщиной ~ 1700 мкм сформирована кристаллитами пластинчатой формы, ее основным элементом является алюминий (≈ 77 ат. %).
Методами, просвечивающие электронный микроскопии выполнен анализ субструктуры цемента в головке длинномерных рельсов специального назначения категории ДТ400ИК из заэвтектоидной стали после длительной эксплуатации на экспериментально на кольце РЖД (пропущенный тоннаж 187 млн. тонн). Показано, что после эксплуатации пластины цементита искривляются и разделяются ферритными мостиками. В пластинах феррита и цементита формируется дислокационная субструктура: хаотически распределенного и сеченого типа в феррите и упорядоченная в цементе. Отмечена повышенная плотность дислокаций на межфазных границах феррит-цементит по сравнению с объемом ферритных пластин. Указаны два возможных механизма деформационного преобразования зерен пластинчатого перлита: разрушение пластин цементита и вытягивание углерода из решетки карбидной фазы. Указано, что вынос углерода из цементитных пластин происходит наиболее интенсивно вблизи дефектов феррите и цементите. Образованные наноразмерные частицы третичного цементита распределены в ферритных пластинах неравномерно, большая их часть наблюдается в местах расположения ферритных субзерен и межфазных границ. Это приводит к неоднородному дифракционному контрасту на темнопольных изображениях цементных пластин. Выявлена фрагментация пластин феррита и цементита и оценены азимутальные составляющие углов полной разориентации. По всем установленным закономерностям преобразования субструктуры цементита осуществлено сравнение с результатами для рельсов из доэвтектоидной стали.