Работы автора

Численное исследование аэродинамических характеристик осесимметричного профиля с целью его оптимизации (2021)

На сегодняшний день одной из важных и актуальных задач науки аэродинамики является исследование и оптимизация аэродинамических характеристик форм тел в потоке газа. Данная проблема возникает при проектировании летательных аппаратов и различных судов и связана с рациональным выбором формы профиля по большому количеству различных характеристик и, в частности, по величине аэродинамического сопротивления.

В данной работе описываются методы оптимизации осесимметричного аэродинамического профиля в стационарном ламинарном невязком потоке газа под различны-ми углами атаки. Предлагаемый метод решения подобной проблемы оптимизации и численного исследования аэродинамических характеристик описанного тела в потоке является актуальным ввиду сложности ее решения, например, традиционными методами на основе системы дифференциальных уравнений Навье-Стокса. Экспериментальные методы имеют своей основой дорогостоящие и затратные по времени инструменты, не гарантирующие нахождение оптимума. Такой вычислительный инструмент, например, как Ansys Fluent хорошо приспособлен для решения подобных задач гидроаэродинамики и позволяет не только ускорить и удешевить процесс проведения вычислительного эксперимента, но и повысить эффективность его проведения.

В статье описывается процесс поиска оптимума, сводящийся к минимизации лобового сопротивления ранее описанного нами осесимметричного профиля. Также приводится описание параметризации геометрии профиля крыла и его анализ посредством предлагаемого программного комплекса.

Результатом проведенного численного исследования является полученное описание аэродинамических характеристик оптимизированной формы профиля для различных скоростей потока газа.

Издание: Прикладная физика
Выпуск: № 1 (2021)
Автор(ы): Чернов Николай Николаевич, Саенко Александр Викторович, КРАВЧУК ДЕНИС АЛЕКСАНДРОВИЧ, Палий Александр Викторович, Чернега Юрий Геннадиевич, Маевский Андрей Михайлович
Сохранить в закладках
Применение фторидной плазмы для формирования наноразмерных структур на поверхности кремния (2022)

Изучается влияние длительности плазмохимической обработки кремниевых подложек во фторидной плазме. В качестве источника использовалась плазма гексафторида серы (SF6). Был проведён анализ полученных зависимостей шероховатости, высоты и угла наклона, сформированных при травлении, от времени плазмохимической обработки и от потока фторсодержащего газа. Длительность обработки во фторсодержащей плазме влияет на шероховатость вытравленной поверхности и геометрию вытравленной области, так при более длительной обработке во фторидной плазме возрастает шероховатость и угол полученной структуры. Изучение морфологии про-водилось на установке атомно-силовой микроскопии (АСМ). Было установлено, что по мере увеличения времени плазмохимической обработки увеличивался угол вытравленной структуры, зависимость шероховатости от времени имела условно два участка, интенсивно возрастающей до 60 сек и участок с мало меняющейся шероховатостью, но с большой дисперсией. При увеличении потока фторсодержащего газа линейно увеличивались угол вытравленной структуры, высота структуры и шероховатость вытравленной поверхности.

Издание: Прикладная физика
Выпуск: № 6 (2022)
Автор(ы): Климин Виктор Сергеевич, Саенко Александр Викторович, Кесслер Илария Олеговна, Морозова Юлия Викторовна, Вакулов Захар Евгеньевич, Агеев Олег Алексеевич
Сохранить в закладках
Моделирование структуры оксидного солнечного элемента (2022)

Проведено численное моделирование оксидного солнечного элемента на основе p–n гетероперехода Cu2O/TiO2 для оптимизации его структуры и повышения эффективности преобразования энергии. Исследовано влияние толщин слоев, концентраций акцепторов и доноров в слоях Cu2O и TiO2, а также работы выхода из материала тыльного контакта на фотоэлектрические параметры солнечного элемента. Получено, что оптимальная толщина слоев Cu2O и TiO2 составляет 1,5 мкм и 100 нм соответственно. Показано, что для получения высокой эффективности солнечного элемента концентрация акцепторов в слое Cu2O должна составлять 1016 см-3, а концентрация доноров в слое TiO2 должна быть 1019 см-3. Получено, что работа выхода материала тыльного контакта должна быть не менее 4,9–5 эВ для достижения высоких значений эффективности. Наиболее подходящими материалами для контакта к Cu2O являются Ni, C и Cu. Для солнечного элемента на основе p–n гетероперехода Cu2O/TiO2 получена максимальная эффективность 10,21 % (плотность тока короткого замыкания 9,89 мА/см2, напряжение холостого хода 1,38 В, фактор заполнения 74,81 %). Результаты могут быть использованы при разработке и формировании гетероструктур недорогих оксидных солнечных элементов.

Издание: Прикладная физика
Выпуск: № 4 (2022)
Автор(ы): Саенко Александр Викторович, Рожко Андрей Алексеевич, Малюков Сергей Павлович, Климин Виктор Сергеевич
Сохранить в закладках
Разработка экспериментального устройства для автоматизированного измерения вольт-амперных характеристик солнечных элементов (2024)

Представлен емкостной метод и разработано экспериментальное устройство для автоматизированного измерения вольт-амперных характеристик солнечных элементов. Метод заключается в использовании в качестве переменной нагрузки емкости конденсатора для автоматизации процесса измерения. Основное преимущество данного метода заключается в быстроте измерения вольт-амперной характеристики солнечного элемента, что позволяет повысить точность и равномерность измеряемых фотоэлектрических параметров за счет снижения негативных внешних воздействий во времени, в частности нагрева солнечного элемента и нестабильности источника освещения. Проведенные измерения вольт-амперных характеристик солнечных элементов с использованием разработанного экспериментального устройства показали, что погрешность полученных фотоэлектрических параметров по сравнению с заявленными в спецификации значениями составляет порядка 5 %, что подтверждает высокую точность представленного метода измерения.

Издание: Прикладная физика
Выпуск: №5 (2024)
Автор(ы): Саенко Александр Викторович, Билык Герман Евгениевич, Жейц Виталий Владимирович
Сохранить в закладках
Моделирование структуры бессвинцового перовскитного солнечного элемента (2022)

Рассмотрено численное моделирование бессвинцового перовскитного солнечного элемента в программе SCAPS-1D для оптимизации его структуры и улучшения эффективности преобразования энергии. Проведено исследование влияния толщины, концентраций дефектов и акцепторов в слое бессвинцового перовскита CH3NH3SnI3, а также работы выхода из материала тыльного контакта на фотоэлектрические параметры солнечного элемента. Получено, что оптимальная толщина слоя CH3NH3SnI3 составляет 500 нм, концентрация дефектов должна составлять порядка 1014–1015 см-3, а оптимальная концентрация акцепторов должна составлять 1016 см-3. Показано, что работа выхода материала тыльного контакта должна быть не менее 4,9–5 эВ для создания высокоэффективных солнечных элементов. Получена макси-мальная эффективность 23,13 % для перовскитного солнечного элемента со структу-рой FTO/TiO2/CH3NH3SnI3/Cu2O/C (ток короткого замыкания 31,94 мА/см2, напряже-ние холостого хода 0,95 В, фактор заполнения 76,07 %). Результаты могут быть ис-пользованы при разработке и изготовлении нетоксичных, высокоэффективных и не-дорогих перовскитных солнечных элементов.

Издание: Прикладная физика
Выпуск: № 1 (2022)
Автор(ы): Саенко Александр Викторович, Малюков Сергей Павлович, Рожко Андрей Алексеевич
Сохранить в закладках
Моделирование оксидного солнечного элемента на основе гетероперехода ZnO/Cu2O (2023)

Проведено численное моделирование оксидного солнечного элемента на основе гетероперехода ZnO/Cu2O для оптимизации его структуры и повышения эффективности преобразования энергии. Исследовано влияние шунтирующего и последовательного сопротивлений, толщины и концентрации дефектов в слоях Cu2O и ZnO, а также поверхностной концентрации дефектов на гетерогранице ZnO/Cu2O на фотоэлектрические параметры солнечного элемента. Показано, что величина шунтирующего и последовательного сопротивлений должна составлять 2500 Омсм2 и 3,3 Омсм2, а толщина слоев Cu2O и ZnO должна быть 5 мкм и 20 нм соответственно. Получено, что оптимальная концентрация дефектов (вакансий ионов меди) в слое Cu2O составляет 1015 см-3, концентрация дефектов (кислородных вакансий) в слое ZnO составляет 1019 см-3, а также поверхностная концентрация дефектов на межфазной границе должна быть как можно меньше и составлять 1010 см-2. Оптимизация структуры оксидного солнечного элемента позволила получить эффективность преобразования энергии до 10,25 %. Результаты могут быть использованы при разработке и формировании гетероструктур оксидных солнечных элементов.

Издание: Прикладная физика
Выпуск: № 4 (2023)
Автор(ы): Саенко Александр Викторович, Билык Герман Евгениевич, Малюков Сергей Павлович
Сохранить в закладках