На основе детального анализа и обобщения результатов расчетов энергетического спектра электронов c использованием разных моделей в газовых разрядах в чистом углекислом газе CO2 и в смесях, содержащих СО2, найдена константа скорости диссоциации СО2 электронным ударом в газовом разряде постоянного тока атмосферного давления. Показано, что при значениях приведенного электрического поля от 55 Тд до 100 Тд преобладающим механизмом разложения молекулы СО2 являются столкновения молекул СО2 с электронами. Получено выражение для вычисления константы скорости диссоциации СО2 электронным ударом в зависимости от приведенного электрического поля.
Приведен аналитический обзор результатов экспериментальных и теоретических исследований разложения углекислого газа в тлеющих разрядах. Из сравнительного анализа литературных данных предпринята попытка определить параметры разряда, при которых обеспечиваются максимальные значения степени разложения углекислого газа и энергетическая эффективность для конкретного устройства. Максимальные значения степени разложения сухого углекислого газа 40 % и энергетической эффективности 32 % достигаются в разрядных устройствах при силе тока от 10 до 100 мА, удельной мощности от 0,2 до 3,6 Вт/см, приходящейся на единицу длины положительного столба, при средних (50–60 Торр) и атмосферном давлениях в дозвуковом протоке газа с объёмным расходом 300 см3/с. Перспективными могут быть разрядные устройства, в которых для утилизации углекислого газа применяется импульсно-периодический (в диапазоне от несколько десятых долей до несколько десятков кГц) тлеющий разряд атмосферного давления.
Приведен аналитический обзор результатов исследований разложения углекислого газа в барьерном разряде атмосферного давления. Разложение углекислого газа CO2 в барьерном разряде происходит неравновесных условиях в результате диссоциативного возбуждения молекулы электронным ударом. Установлено, что степень разложения углекислого газа и энергетическая эффективность устройства не превышают 70 % и 23 %, соответственно. Эти параметры зависят от геометрии разряда, от вложенной в разряд мощности, расхода газа, зазора между электродами. Одним из перспективных путей увеличения эффективности барьерного разряда является наполнение зазора между электродами гранулами из различных материалов, включая катализаторы.
Представлены результаты исследования плазменного пиролиза метана с использованием плазмотрона постоянного тока с полыми электродами. Дуговая мощность
плазмотрона составляла 40–50 кВт, расход метана 0,7–1,6 г/с, соотношение расходов метана, подаваемого в реактор и плазмотрон, варьировалось в диапазоне 0–1,63.
Показано, что при увеличении отношения этих потоков концентрация водорода
уменьшается, при этом растет доля не превращённого метана. Зависимость выхода
ацетилена проходит через максимум в диапазоне отношений 0,6–1,3 с достижением
объемной концентрации на уровне 10,52 %. Степень конверсии метана в плазмотроне
достигает 98–99 %, а объемная концентрация водорода – 92–97 %.
Задача разложения СО2 является одной из составляющих проблем, связанных с глобальным потеплением. Одним из перспективных направлений является использование низкотемпературной плазмы. Для этих целей применяются разные типы разрядов. СВЧ-разряд в жидких углеводородах в этих задачах не исследован. В настоящей работе приведены первые результаты по исследованию продуктов СВЧ-разряда в жидком Нефрасе С2 80/120 (нефтяной растворитель, смесь легких углеводородов с температурой кипения от 33 до 205 оC) при введении в разрядную зону СО2. Основными продуктами являются Н2, С2Н2, С2Н4, СН4, СО2, СО. В продуктах не обнаружено кислорода. Это может объясняться его связыванием с водородом и метаном, которые образуются при разложении нефраса. Показано, что степень разложения СО2 достигает 70 %.
Ацетилен является важным химическим промежуточным продуктом, который находит широкое применение в химической промышленности. В последние годы возрастает интерес к разработке эффективных методов синтеза ацетилена. В данной статье рассмотрено использование СВЧ-разряда в жидких углеводородах с барботажем аргона для получения ацетилена. Максимальная объемная скорость образования ацетилена в ходе экспериментов равнялась 280 мл/мин, при энергозатратах на образование ацетилена 48 л/кВтч. Показаны зависимости скорости образования ацетилена от падающей мощности и расхода аргона.