Работы автора

ОДНОСТОРОННЯЯ ЗАДАЧА ДЛЯ ОПЕРАТОРА БАРЕНБЛАТТА - ЖЕЛТОВА - КОЧИНОЙ (2022)

Доклад посвящён исследованию односторонней задачи для псевдопараболического оператора Баренблатта - Желтова - Кочиной в одномерном случае. Эта задача формулируется в виде вариационного неравенства и с физической точки зрения моделирует нестационарный процесс фильтрации вязкой жидкости в трещиновато-пористой галерее с ограничением на модуль скорости фильтрации по трещинам. Теорема существования слабого обобщённого решения этой задачи известна в литературе как в одномерном, так и многомерном случаях, и следует из результатов, полученных М. Пташник (Nonlinear Analysis, 2007, vol. 66, pp. 2653-2675) с применением метода штрафа. При этом оператор штрафа выбирался в стандартном виде. В настоящем исследовании рассматривается приближённая начально-краевая задача с оператором штрафа А. Каплана и изучается семейство её решений. Благодаря специфической структуре оператора А. Каплана, удаётся получить повышенную регулярность слабого обобщённого решения исходной задачи по отношению к ранее известным свойствам регулярности, а также найти усиленное свойство аппроксимации этого решения последовательностью решений приближённой задачи с оператором А. Каплана. Основные результаты исследования подробно изложены в статье [Т. В. Саженкова, С. А. Саженков, Е. В. Саженкова. Регулярность и аппроксимация решения односторонней задачи для псевдопараболического оператора Баренблатта - Желтова - Кочиной // Матем. заметки СВФУ, 2022, 29 (1), 69 - 87].

Издание: МАК: МАТЕМАТИКИ - АЛТАЙСКОМУ КРАЮ
Выпуск: № 4 (2022)
Автор(ы): САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, Саженкова Елена Владимировна, САЖЕНКОВА ТАТЬЯНА ВЛАДИМИРОВНА
Сохранить в закладках
УСРЕДНЁННЫЕ ДВУХМАСШТАБНЫЕ УРАВНЕНИЯ ДИНАМИКИ ТЕРМОУПРУГОГО КОМПОЗИТА (2022)

Доклад посвящён исследованию пространственно-одномерной начально-краевой задачи для классической системы нестационарных уравнений линейной термоупругости с периодически быстро осциллирующими по пространственной переменной физическими характеристиками. Задача содержит положительный малый параметр - отношение минимального периода пространственных осцилляций и всего термоупругого тела. Проводится процедура гомогенизации, то есть предельный переход при

Издание: МАК: МАТЕМАТИКИ - АЛТАЙСКОМУ КРАЮ
Выпуск: № 4 (2022)
Автор(ы): САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, ЧЖУН Ц
Сохранить в закладках
МНОГОМАСШТАБНЫЙ АНАЛИЗ АНТИПЛОСКОГО ДЕФОРМИРОВАНИЯ ТЕРМОУПРУГОГО КОМПОЗИТА (2021)

Доклад посвящён исследованию статической модели антиплоского сдвига термоупругого композита - тела, представляющего собой термоупругую связующую матрицу, прошитую тонкими армирующими нитями. Постановка содержит два малых положительных параметра δ и ε, характеризующих толщину каждой отдельной нити и расстояние между двумя соседними нитями, соответственно. Исследуется асимптотическое поведение решений при стремлении малых параметров к нулю. В результате конструируются две модели, описывающие предельные режимы. Основные результаты настоящего исследования подробно изложены в статье [S. A. Sazhenkov, I. V. Fankina, A. I. Furtsev, P. V. Gilev, A. G. Gorynin, O. G. Gorynina, V. M. Karnaev, and E. I. Leonova, Siberian Electronic Mathematical Reports, 2021, 18(1), 282- 318].

Издание: МАК: МАТЕМАТИКИ - АЛТАЙСКОМУ КРАЮ
Выпуск: № 3 (2021)
Автор(ы): САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, ГИЛЕВ ПАВЕЛ ВЯЧЕСЛАВОВИЧ, Леонова Эвелина Ивановна
Сохранить в закладках
АППРОКСИМАЦИЯ РЕШЕНИЯ НЕСТАЦИОНАРНОЙ ОДНОСТОРОННЕЙ ЗАДАЧИ ДИФФУЗИИ-АБСОРБЦИИ (2020)

Доклад посвящён исследованию начально-краевой задачи для нестационарного нелинейного уравнения диффузии-абсорбции с ограничением значений диффузионного потока и однородными начальными и граничными условиями. Изучается семейство приближённых решений, получаемых с помощью метода штрафа с применением интегрального оператора штрафа А. Каплана. Доказывается, что семейство приближённых решений сильно сходится к решению исходной задачи в анизотропном пространстве Бохнера при стремлении малого параметра регуляризации к нулю. Затем в результате систематического изучения структуры оператора штрафа устанавливается свойство равномерной аппроксимации в пространстве непрерывных по совокупности переменных функций. Настоящее исследование является развитием работ [1-3], более точно, их продолжением на нестационарный случай.

Издание: МАК: МАТЕМАТИКИ - АЛТАЙСКОМУ КРАЮ
Выпуск: № 2 (2020)
Автор(ы): САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, САЖЕНКОВА ТАТЬЯНА ВЛАДИМИРОВНА
Сохранить в закладках
ЭФФЕКТИВНЫЕ ХАРАКТЕРИСТИКИ МЕХАНИЧЕСКОЙ СИСТЕМЫ "ЩЕТИНИСТАЯ СТРУКТУРА - ВЯЗКАЯ ЖИДКОСТЬ" (2020)

В настоящей заметке излагаются новые результаты о свойствах эффективных механических характеристик усредненной модели взаимодействия слабо сжимаемой вязкой жидкости (или газа) и погруженной в нее двухуровневой щетинистой структуры. Эта модель была построена авторами ранее (см. [1]-[3]) с помощью методов теории гомогенизации, исходя из базовых уравнений микроструктуры. Она естественным образом обобщает хорошо известную систему К.-Х. Хоффмана, Н. Д. Боткина и В. Н. Старовойтова [4], сконструированную в случае одноуровневой структуры, и в приложениях может быть использована, например, в описании аэродинамики в окрестности листа растения, в моделировании поверхности эпителия кровеносных сосудов; и при проектировании биотехнологических устройств, работающих в жидкостях.

Издание: МАК: МАТЕМАТИКИ - АЛТАЙСКОМУ КРАЮ
Выпуск: № 2 (2020)
Автор(ы): САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, Саженкова Елена Владимировна
Сохранить в закладках
АППРОКСИМАЦИЯ РЕШЕНИЯ ОДНОСТОРОННЕЙ ЗАДАЧИ ДЛЯ P(X)-ЭЛЛИПТИЧЕСКОГО УРАВНЕНИЯ (2020)

Рассматривается однородная задача Дирихле для p(x)-эллиптического уравнения анизотропной диффузии-абсорбции с ограничением значений диффузионного потока. Изучается семейство приближённых решений, получаемых с помощью метода штрафа с применением интегрального оператора штрафа А. Каплана. Устанавливается, что семейство приближённых решений при стремлении малого параметра регуляризации к нулю слабо сходится к решению исходной задачи в пространстве Соболева первого порядка с переменным показателем и что имеет место свойство равномерной аппроксимации в классах функций, непрерывных по Гёльдеру.

Издание: ТРУДЫ СЕМИНАРА ПО ГЕОМЕТРИИ И МАТЕМАТИЧЕСКОМУ МОДЕЛИРОВАНИЮ
Выпуск: № 6 (2020)
Автор(ы): САЖЕНКОВА ТАТЬЯНА ВЛАДИМИРОВНА, Саженкова Елена Владимировна, САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ
Сохранить в закладках
Гомогенизация модели антиплоского сдвига слоистого композита методом Аллера - Нгуетсенга (2023)

В статье рассматривается пространственно-одномерная нестационарная задача антиплоского сдвига для линейно термоупругого материала (композита) с быстроосциллирующими физическими характеристиками. Частота осцилляций полагается пропорциональной безразмерной величине \varepsilon^{-1}. С помощью метода двухмасштабной сходимости Аллера - Нгуетсенга проводится предельный переход при стремлении частоты осцилляций к бесконечности, то есть при \varepsilon\to0+. В результате конструируется предельная усреднённая двухмасштабная модель динамики композита. Затем стандартным методом асимптотической декомпозиции разделяются масштабы и выводится предельная макроскопическая модель. Настоящая работа подтверждает результат о предельном режиме осцилляций, полученный Ж. Франкфором (1983) с использованием метода аналитической теории полугрупп. Главная новизна настоящей работы по отношению к исследованию Ж. Франкфора состоит в конструкции <<промежуточной>> двухмасштабной модели, а также в дополнительном учёте присутствия быстро осциллирующих внешних распределённых сил и источников тепла и наличия быстрых осцилляций в начальных данных задачи.

Издание: ТРУДЫ СЕМИНАРА ПО ГЕОМЕТРИИ И МАТЕМАТИЧЕСКОМУ МОДЕЛИРОВАНИЮ
Выпуск: № 9 (2023)
Автор(ы): САЖЕНКОВ СЕРГЕЙ АЛЕКСАНДРОВИЧ, Саженкова Елена Владимировна, ЧЖУН Ц
Сохранить в закладках