Показана возможность выделения водорода из газовых смесей путем его химического связывания в ходе гидрирования ароматических соединений — жидких органических носителей — с использованием Ni–Mo-сульфидных катализаторов без носителя, полученных in situ при диспергировании и последующем высокотемпературном разложении-сульфидировании маслорастворимых предшественников активного компонента в углеводородной среде. Изучены особенности гидрирования нафталина, его монометилзамещенных производных и антрацена при различном соотношении компонентов в составе газовых смесей; показана зависимость конверсии субстрата и селективности по продуктам от температуры, давления и времени процесса, а также присутствия воды в условиях реакции водяного газа. Установлено, что конверсия ароматических соединений и степень насыщения водородом при проведении процесса в атмосфере синтез-газа (соотношение СО:Н2 = 1:1) при температуре 340°С и давлении 5 МПа убывает в ряду антрацен > 2-метилнафталин ~ нафталин >> 1-метилнафталин. При этом на скорость реакции гидрирования влияют стерические затруднения, возникающие при сорбции молекул субстрата ввиду наличия заместителей в бензольном кольце, и структура конформационных изомеров молекул-интермедиатов. Показано, что дисперсные Ni–Mo-сульфидные катализаторы активны в гидрировании 2-метилнафталина и обеспечивают конверсию не менее 90% в соответствующие тетралины (соотношение 6- и 2- изомеров (1.5–1.7):1) в диапазоне температур 320–360°С при содержании в газовой смеси монооксида углерода и метана 25–50 об.% и общем давлении в системе 5 МПа. Установлено, что при проведении процесса в условиях реакции водяного газа (содержание воды 10 мас.%, CO:H2 = 1:1 при общем давлении в системе 5 МПа) для обеспечения in situ регенерации катализатора и перевода в активную сульфидную форму содержание серы (предшественник сульфидирующего агента) должно быть не менее 1.2 мас. % при содержании молибдена 0.06 мас. %.
Обоснование. Наукой и практикой доказано, что кормление животных полнорационными кормосмесями позволяет повысить продуктивность. Наибольшее распространение получило приготовление рассыпных кормосмесей.
Аналитический обзор научно-исследовательских работ в области техники и технологии приготовления полнорационных кормосмесей показал преимущество применения кормосмесителей периодического действия. Это связно с тем, что ввиду циркуляции в смесителе кормовых компонентов достигается высокое качество кормосмеси. Вместе
с тем остается актуальным вопрос исследования и выбора рациональных параметров усовершенствованных идейных вариантов в направлении экономии энергоресурсных затрат.
Цель работы – совершенствование конструкции вертикального кормосмесителя периодического типа, устранение случаев задержки выгрузки готовой смеси, отрицательно влияющей на производительность и связанные с ней энергетические, трудовые и материальные затраты.
Материалы и методы. Объектом исследования является технология и конструкция кормосмесителя периодического действия. Исследуется цикловая и среднечасовая производительность смесителя. Приводятся математические выражения, описывающие зависимости времени загрузки и выгрузки из емкости смесителя. Анализируется
влияние емкости смесителя на его производительность, выраженное специальным коэффициентом. Определены пределы этого коэффициента, положительно влияющего на производительность установки.
Результаты. Установлено, что при конструктивно-технологическом совершенствовании смесителей и обеспечении правильной эксплуатации емкость не служит основным фактором, повышающим их производительность.
Заключение. Максимальная производительность смесителя вертикального кормосмесителя периодического типа в основном обеспечивается количеством циклов шнека, периодической принудительной подачи смеси, а качество перемешивания зависит от угла установки лопастного разрыхлителя.