Целью исследования является решение задачи формирования суточных графиков нагрузок для оптимального управления режимами экологически дружественного (мощность генерируется только на ветровых и солнечных станциях) активного энергетического комплекса, связанного с единой энергосистемой одной линией электропередачи. В исследовании выполнялась корректировка суточных плановых графиков нагрузок, расположенных на территории активного энергетического комплекса, заключающаяся в смещении потребления мощности на другое время суток (потребление мощности откладывается). Проблема оптимального распределения отложенной мощности представляется оптимизационной задачей множественного рюкзака, которая адаптируется к решению поставленной задачи. Апробация предложенного алгоритма была выполнена на 6-узловой схеме по следующему сценарию: сформировать графики нагрузок в активном энергетическом комплексе для обеспечения оптимального управления активным энергетическим комплексом при сохранении перетока мощности из единой энергосистемы в заданных пределах. Проведенные эксперименты по оценке обеспечения бесперебойности в электроснабжении потребителей активного энергетического комплекса в зависимости от исходных данных показали, что структура исходных данных влияет на качество результатов. Установлено, что базовым условием при формировании графиков нагрузки является соблюдение пределов мощности из единой энергосистемы. Анализ полученных результатов показал, что полное исключение нарушения в электроснабжении потребителей активного энергетического комплекса достигается при наличии возможности разделить нагрузку для переноса ее на другие часы суток и при отключении 0,151 МВт в режиме 7. Нагрузка должна быть разделена не менее чем на три части. Отключение 0,151 МВт выполняется для предотвращения отсоединения активного энергетического комплекса от единой энергосистемы, следствием которого будет дефицит мощности 4,652 МВт.
Цель исследования – провести анализ актуальных проблем и методов, предлагаемых для решения задач проектирования, эксплуатации и планирования развития будущих устойчивых электроэнергетических систем с учетом интеграции возобновляемых источников энергии, объединения тепловых и газовых сетей с использованием высокоскоростных каналов связи. Излагается авторский метод обеспечения устойчивости системы и защиты целостности электроэнергетических систем. Для обеспечения устойчивой работы будущих электроэнергетических систем предлагается использовать методы многоуровневой оптимизации и управления цифровыми энергосистемами, технологии интеллектуальных сетей и методы обработки векторных измерений на основе кибербезопасных каналов связи. Установлено, что предложенные схемы позволяют обеспечить устойчивость системы и защитить ее целостность. С целью демонстрации эффективности таких подходов приведен пример решения задачи предотвращения веерных отключений энергосистемы путем целенаправленного разделения/изоляции системы на основе авторского двухэтапного алгоритма управляемой изоляции. Показано, что для решения поставленных задач современной электроэнергетики является эффективным использование новых телекоммуникационных технологий, средств обеспечения ситуационной осведомленности и схемы защиты целостности систем, основанных на современных методах исследования операций и искусственного интеллекта. Предложенный авторами метод многокритериальной оптимизации использует минимизацию целевой функции нарушения перетока мощности и учитывает ограничения на согласованность работы генераторов. Метод был протестирован на тестовой схеме IEEE, состоящей из 118 узлов. Тестовые расчеты подтвердили, что метод позволяет обеспечивать минимальный дисбаланс мощности и минимальное нарушение перетоков мощности. Таким образом, результаты работы открывают новые возможности для улучшения мониторинга и защиты будущих устойчивых электроэнергетических систем, в том числе с учетом интеграции возобновляемых источников энергии, тепловых и газовых сетей.