Цель – моделирование электрического поля в межэлектродном зазоре в условиях электрохимического формообразования полости тонкостенной детали ракетно-космической техники. В исследованиях использовалось моделирование процесса электрохимического формообразования полости при постоянном напряжении в стационарном режиме в среде COMSOL Multiphysics. Моделирование проводилось для схемы электрохимического формообразования с подвижным катодом с вертикальной и горизонтальной подачей к обрабатываемой поверхности заготовки с поддержанием постоянного межэлектродного зазора. Условия моделирования были приняты следующие: материал трубки катода – нержавеющая сталь 12Х18Н10Т; материал тонкостенной детали – алюминиевый сплав АМг6; электролит – раствор NaNO3. При моделировании электрического поля в межэлектродном зазоре учитывался процесс теплообмена. В ходе моделирования электрического поля при электрохимическом формообразовании полости тонкостенной детали был получен макрос, который позволяет адаптировать моделирование процесса под разные входные условия процесса. В результате моделирования были получены следующие картины распределения: плотности тока в катоде, потенциалов, электрического поля в межэлектродном зазоре и прилегающей к нему области, температуры процесса электрохимического формообразования. Согласно результатам моделирования, установлено, что линии электрического поля направлены к катоду от периферии заготовки. Это означает, что в заданной области происходит анодное растворение материала, что характеризует закон распределения потенциалов в электрохимической ячейке. Согласно полученной при моделировании картине распределения температуры установлено, что ее повышение в зоне обработки незначительное. Показано, что увеличение температуры электролита приводит к пропорциональному увеличению температуры стенки. Таким образом, проведенное исследование дает теоретическое представление изучаемого процесса.
Цель – разработка и испытания прототипа интеллектуальной автоматики контроля успешности пусков асинхронных двигателей с короткозамкнутым ротором на физической модели локальной системы энергоснабжения. В прототипе реализован поэтапный прогностический контроль процесса, на каждом из которых на основе моделей критических параметров двигателя и питающей сети проверяются частичные условия его успешности. Разработка базируется на использовании программного комплекса LabVIEW, методов параметрической идентификации, физического моделирования, фильтрации аналоговых и цифровых сигналов, теории автоматического регулирования, математического анализа и статистики. Экспериментально доказана возможность и эффективность предиктивного контроля успешности пуска асинхронного двигателя в локальных системах энергоснабжения по величине, скорости и характуру изменения режимных параметров статорных обмоток двигателя без непосредственного измерения частоты вращения его вала. Показано, что погрешность разработанных моделей для определения критических параметров режима, определяющих успешность пуска асинхронного двигателя, не превышает 4%. Установлено, что погрешность прогностической оценки продолжительности пуска асинхронного двигателя не превышает 14%. Показано, что в 91% экспериментов с пусками асинхронного двигателя на физической модели локальной системы энергоснабжения при вариации схемно-режимных условий прототип автоматики достоверно идентифицировал успешность/неуспешность пуска двигателя на разных этапах процесса. При выявлении неуспешности прототип обеспечивал прерывание пусков на ранних стадиях. В результате проведенных исследований случаев отсутствия выдачи автоматикой команды на прерывание процесса пуска в условиях его неуспешности не зафиксировано. Таким образом, применение интеллектуальной автоматики контроля успешности пусков асинхронных двигателей в локальных системах энергоснабжения позволит снизить вероятности повреждения двигателей и оборудования питающих сетей, сохранить ресурс их работоспособности и повысить надежность