ISSN 1991-2927
Языки: ru · en

АВТОМАТИЗАЦИЯ ПРОЦЕССОВ УПРАВЛЕНИЯ

Архив статей журнала

ПРИМЕНЕНИЕ ФИЛЬТРА КАЛМАНА ДЛЯ УСТРАНЕНИЯ КОРРЕЛИРОВАННОГО ШУМА В ИЗОБРАЖЕНИЯХ ПЕРЕД ОБУЧЕНИЕМ АВТОЭНКОДЕРОВ (2024)
Выпуск: № 4 (78) (2024)
Авторы: Осипенко Игорь Николаевич

В статье исследуется влияние предварительного использования фильтра Калмана на качество обучения автоэнкодеров при обработке изображений с коррелированным шумом. Цель исследования заключается в сравнении эффективности применения фильтра Калмана с традиционными методами фильтрации, такими как медианный фильтр и фильтр Гаусса, в контексте предварительной обработки изображений. Для эксперимента использовались изображения с искусственно добавленным коррелированным шумом.

Методология включала настройку параметров фильтра Калмана для оптимального удаления коррелированного шума, а также применение медианного и Гауссового фильтров для сравнительного анализа. Оценка качества фильтрации проводилась с использованием индекса структурного сходства (SSIM) и пикового соотношения сигнал/шум (PSNR). Результаты эксперимента показывают, что фильтр Калмана значительно снижает уровень коррелированного шума, улучшая качество изображений и повышая точность обучения автоэнкодеров. Это подтверждает эффективность применения фильтра Калмана для предварительной обработки изображений и обеспечивает более чистые данные для последующих этапов машинного обучения. Результаты исследования подчеркивают важность выбора подходящих методов цифровой фильтрации шума для повышения производительности нейронных сетей.

Сохранить в закладках