ПРИКЛАДНАЯ МАТЕМАТИКА И ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА
Архив статей журнала
Данная статья нацелена на определение наиболее эффективной модели машинного обучения для кластеризации данных вибродиагностики. Исследование включает анализ различных моделей и методов, таких как k-means, Agglomerative Clustering, TimeSeriesKMeans и CatBoost. Цель состоит в выборе метода, способного наилучшим образом выявить структуру данных и улучшить понимание особенностей вибрационных сигналов. Результаты исследования могут быть полезны для разработки эффективных систем мониторинга и диагностики оборудования, а также для повышения надежности и производительности технических систем.
В данной статье рассматривается применение нейронных сетей LSTM для прогнозирования потребления электроэнергии. Для обучения и тестирования модели использовались данные о потреблении электроэнергии за несколько лет. Для повышения качества прогнозирования были проведены эксперименты с различными параметрами нейронной сети, такими как число нейронов и глубина истории данных. Результаты показали, что нейронная сеть LSTM обеспечивает высокую точность прогнозирования объемов потребления электроэнергии на основе статистических данных. Эти результаты могут быть полезными для энергетических компаний и государственных органов, занимающихся прогнозированием и планированием энергетических потребностей.