НАУЧНЫЙ ВЕСТНИК МОСКОВСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА ГРАЖДАНСКОЙ АВИАЦИИ
Архив статей журнала
Публикацией данной статьи авторы продолжают исследования в части разработки и апробации методики перестроения маршрута воздушного судна в процессе его выполнения, начатые в ранее опубликованных статьях в «Научном Вестнике МГТУ ГА». В данной статье приводятся результаты исследования в части расширения возможностей методики от реконфигурации маршрута полета для гипотетического воздушного судна и препятствий в горизонтальной плоскости, которые были продемонстрированы ранее, до перестроения маршрута полета как в горизонтальной, так и в вертикальной плоскости для двух различных типов препятствий: 1) наземного естественного или искусственного (гора, опора ЛЭП и т. п.); 2) воздушного (грозовой фронт, запретная область полета и т. п.) и их сочетания на примере полета по маршруту вертолета типа Ми-8 с использованием реальной цифровой карты местности. Напомним, что, как было отмечено ранее, большое количество авиационных происшествий связано с потерей управления в полете, а также со столкновением с землей в управляемом полете (категории LOC-I, CFIT, LALT). В результате расследования данных авиационных происшествий выявлено, что зачастую указанные авиационные происшествия обусловлены необходимостью быстрого изменения маршрута полета вследствие выявления на пути следования воздушного судна препятствий, например грозового фронта. При определении альтернативных маршрутов облета возникшего препятствия, а также в процессе реализации выбранного маршрута облета экипаж совершает ошибки ввиду повышенной психофизиологической нагрузки и дефицита времени. Предлагаемая авторами методика и алгоритмы позволяют оценить безопасность исходного маршрута, рассчитать варианты альтернативных маршрутов облета обнаруженных в процессе полета препятствий, проверить их на реализуемость с учетом летно-технических характеристик воздушного судна, ограничений на управляющие параметры, а также выбрать среди найденных маршрутов облета оптимальный с точки зрения какого-либо критерия, например исходя из минимизации увеличения протяженности маршрута полета, сокращения дополнительных затрат топлива, времени, необходимого на реализацию нового маршрута полета и т. д.
В работе положено начало практическому применению алгоритмов увода летательных аппаратов от трехмерных поверхностей ограничения, представляющих собой комбинацию рельефа местности и искусственных препятствий. Проведен анализ событий, приводящих к авиационным происшествиям, и осуществлено сравнение бортовых систем предварительного уведомления экипажей воздушных судов о столкновении с естественными или искусственными препятствиями. Показано, что такие системы являются недостаточными вследствие своего пассивно-рекомендательного характера выдачи предупреждений. Поставлен вопрос о необходимости реализации активной автоматической системы предотвращения столкновений с пространственными препятствиями. В целях применения имеющихся алгоритмов увода летательных аппаратов от пространственных поверхностей ограничения разработана методика аппроксимации трехмерных поверхностей (препятствий), заданных на цифровой карте местности в виде дискретных отсчетов высоты с определенным шагом на координатной сетке. В качестве аппроксимирующей препятствие непрерывной поверхности второго порядка выбран параболоид вращения, и определены его характеристические параметры. Для определения характеристических параметров параболоида предложены к использованию алгоритм определения пересечения трехмерной поверхности и плоскости, основанный на принципе определения пересечения треугольников в пространстве, а также метод выбора точки перегиба рельефа местности, основанный на определении значения градиента высоты рельефа местности. Приведено построение аппроксимирующего параболоида на примере естественного препятствия в виде горного массива. При синтезе алгоритмов предотвращения столкновения летательных аппаратов с препятствиями отмечена необходимость учета не только параметров поверхностей ограничения и динамических характеристик летательных аппаратов, но и точностных характеристик источников данных об их положении. Показаны перспективные направления применения разработанной методики.