ISSN 1818-1015 · EISSN 2313-5417
Язык: ru

МОДЕЛИРОВАНИЕ И АНАЛИЗ ИНФОРМАЦИОННЫХ СИСТЕМ

Архив статей журнала

МАТРИЧНО-КУБИТНЫЙ АЛГОРИТМ СЕМАНТИЧЕСКОГО АНАЛИЗА ВЕРОЯТНОСТНЫХ ДАННЫХ (2024)
Выпуск: Т. 31 № 3 (2024)
Авторы: Суров Илья Алексеевич

В статье представлен метод семантического анализа данных посредством комплекснозначного матричного разложения. Метод основан на квантовой модели контекстно-чувствительных решений, согласно которой наблюдаемые вероятности порождаются кубитными состояниями, представляющими субъективный смысл контекстов для базисного решения. В простейшем трёхконтекстом случае один из кубитов раскладывается в суперпозицию оставшихся двух, математически представляющую смысловые отношения между контекстами. Для использования в задаче анализа данных эта модель представлена в матричной форме так, что строки и столбцы соответствуют контекстам и постановкам эксперимента. При этом наблюдаемые действительные данные порождаются матрицей комплекснозначных амплитуд, раскладываемой на произведение действительной матрицы базисных векторов и комплекснозначной матрицы коэффициентов суперпозиции. Это разложение выявляет устойчивые процессно-смысловые соотношения контекстов, не обнаруживаемые другими методами. В результате данные воспроизводятся более точно и с меньшим числом параметров, чем при использовании сингулярного и неотрицательного матричных разложений той же размерности. Модель успешно испытана в описательном и предсказательном режимах. Результат открывает возможности для разработки природоподобных вычислительных архитектур на новых логических принципах.

Сохранить в закладках