МОДЕЛИРОВАНИЕ И АНАЛИЗ ИНФОРМАЦИОННЫХ СИСТЕМ
Архив статей журнала
Статья продолжает цикл публикаций по разработке и верификации управляющих программ на основе LTL-спецификаций специального вида. Ранее для описания строго детерминированного поведения программ была предложена декларативная LTL-спецификация, проработаны способы её верификации и трансляции: для верификации используется инструмент проверки модели nuXmv, трансляция осуществляется в императивный язык программирования ST для программируемых логических контроллеров. При верификации декларативной LTL-спецификации поведения программ может возникнуть необходимость в моделировании поведения её окружения. В общем случае требуется обеспечить возможность построения замкнутых систем «программа-окружение». В настоящей работе для описания поведения окружения программ логического управления предложена LTL-спецификация ограниченно недетерминированного поведения булевой переменной. Данная спецификация позволяет задавать поведение булевых сигналов обратной связи, а также условия справедливости для исключения нереалистичных сценариев поведения. В статье предлагается подход к разработке и верификации программ логического управления, в рамках которого модель поведения окружения программы описывается в виде ограничений на поведение её входных сигналов, что позволяет избежать отдельного детального представления процессов функционирования окружения. В результате полученная модель поведения замкнутой системы «программа-окружение» даёт ряд преимуществ: упрощение процесса моделирования, сокращение пространства состояний проверяемой модели, снижение времени верификации. При невозможности сведения поведения окружения к поведению имеющихся входных сигналов данный подход предполагает применение «мнимых» датчиков - дополнительных булевых переменных, использующихся как вспомогательное средство для описания поведения входных сигналов. Цель введения мнимых датчиков состоит в компенсации недостающих датчиков для отслеживания специфического поведения отдельных элементов окружения, которое необходимо учесть при задании реалистичного поведения входов программы логического управления. Предложенный подход к разработке и верификации программ с учётом поведения окружения (объекта управления) демонстрируется на примере промышленной установки для литья пластмасс.
Статья продолжает цикл трудов по разработке и верификации управляющих программ на основе LTL-спецификаций специального вида. Ранее была предложена декларативная LTL-спецификация, позволяющая описывать поведение управляющих программ и выполнять построение по ней программного кода на императивном языке ST для программируемых логических контроллеров. Данная LTL-спецификация может быть непосредственно верифицирована на предмет соответствия заданным темпоральным свойствам методом проверки модели (model checking) с помощью инструмента символьной верификации nuXmv. При этом не требуется переводить LTL-формулы спецификации в другой формализм - SMV-спецификацию (код на входном языке инструмента nuXmv). Цель настоящей работы состоит в исследовании альтернативных способов представления модели поведения программы, соответствующей декларативной LTL-спецификации, при её верификации в рамках инструментального средства nuXmv. В статье выполняются преобразования декларативной LTL-спецификации в различные SMV-спецификации с сопутствующими изменениями постановки задачи верификации, что приводит к значительному снижению временных затрат при проверке темпоральных свойств с использованием инструмента nuXmv. Ускорение верификации обусловлено сокращением пространства состояний проверяемой модели. Полученные в результате предложенных преобразований SMV-спецификации задают одинаковые или бисимуляционно эквивалентные системы переходов, обеспечивая неизменность результатов верификации при замене одной SMV-спецификации на другую.
Процесс-ориентированное программирование - один из подходов к разработке управляющего программного обеспечения. Процесс-ориентированная программа определяется как последовательность процессов. Каждый процесс представляется набором именованных состояний, содержащих программный код, которые задают логику поведения процесса. Выполнение программы заключается в последовательном исполнении этих процессов в их текущих состояниях на каждой итерации цикла управления. Процессы могут взаимодействовать через изменение состояний друг друга и через разделяемые переменные. Статья является развитием метода классификации темпоральных требований к процесс-ориентированным программам с целью упростить и автоматизировать дедуктивную верификацию таких программ. Метод состоит из следующих шагов. На первом шаге требования формализуются на специализированном языке DV-TRL, варианте типизированной логики предикатов первого порядка с набором интерпретированных типов и предикатных и функциональных символов, позволяющем отражать специфические понятия систем управления в процесс-ориентированной парадигме. На втором шаге формализованные требования разбиваются на классы, каждый из которых определяется шаблоном - параметрической формулой языка DV-TRL, причем условия корректности, порождаемые для процесс-ориентированных программ относительно требований, удовлетворяющих одному шаблону, имеют одну и ту же схему доказательства. На третьем шаге разрабатываются соответствующие схемы доказательства. В статье мы сначала даём краткое введение в язык poST, процесс-ориентированное расширение языка ST стандарта МЭК 61131-3. Далее определяется язык DV-TRL. Мы также приводим коллекцию требований на естественном языке для нескольких систем управления. Затем мы определяем шаблоны, позволяющие полностью покрыть все требования этой коллекции и для каждого из шаблонов приводим пример формализованного требования из коллекции и описываем схему доказательства условий корректности для этого шаблона. Статистика распределения требований из коллекции по шаблонам выявляет наиболее востребованные шаблоны. Мы также провели анализ связанных работ.
Настоящая работа продолжает цикл статей по разработке и верификации управляющих программ на основе LTL“=спецификации. Суть подхода заключается в описании поведения программ с помощью формул линейной темпоральной логики LTL специального вида. Полученная LTL“=спецификация может быть непосредственно верифицирована с помощью инструмента проверки модели. Далее по LTL“=спецификации однозначно строится код программы на императивном языке программирования. Перевод спецификации в программу осуществляется по шаблону. Новизна работы состоит в предложении двух LTL“=спецификаций нового вида - декларативной и императивной, а также в более строгом формальном обосновании данного подхода к разработке и верификации программ. Выполнен переход на более современный инструмент верификации конечных и бесконечных систем - nuXmv. Предлагается описывать поведение управляющих программ в декларативном стиле. Для этого предназначена декларативная LTL“=спецификация, которая задаёт размеченную систему переходов как формальную модель поведения программы. Данный способ описания поведения является достаточно выразительным - доказана теорема о Тьюринг“=полноте декларативной LTL“=спецификации. Далее для построения кода программы на императивном языке декларативная LTL“=спецификация преобразуется в эквивалентную императивную LTL“=спецификацию. Доказана теорема об эквивалентности, которая гарантирует, что обе спецификации задают одно и то же поведение. Императивная LTL“=спецификация транслируется в императивный код программы по представленному шаблону. Декларативная LTL“=спецификация, которая подвергается верификации, и построенная по ней управляющая программа гарантированно задают одно и то же поведение в виде соответствующей системы переходов. Таким образом, при верификации используется модель, адекватная реальному поведению управляющей программы.