Архив статей журнала

ИССЛЕДОВАНИЕ МЕТОДОВ ПОСТРОЕНИЯ КАУЗАЛЬНЫХ ГРАФОВЫХ МОДЕЛЕЙ ДЛЯ СЛОЖНЫХ СОЦИОГУМАНИТАРНЫХ СИСТЕМ (2024)
Выпуск: № 2 (2024)
Авторы: Князев Иван Игоревич

Сложные социогуманитарные системы - это разновидность систем, которые изучаются в социологии, антропологии, экономике, политологии, и других гуманитарных науках. Эти системы характеризуются сложностью взаимодействий между их составляющими элементами, которые могут быть как людьми (индивидами, группами), так и культурными, социальными, экономическими и политическими аспектами. Например, общество как социогуманитарная система состоит из различных элементов, таких как люди, культура, институты, ценности и так далее. Они взаимодействуют между собой, образуя сложную сеть связей и влияний, которая определяет поведение и развитие общества. Чтобы лучше понять такие системы, используются различные подходы, включая системный анализ, социальную сетевую теорию, теорию сложности и другие методы. Эти подходы помогают выявить основные закономерности в функционировании сложных социогуманитарных систем и предсказать их развитие в будущем. В данной статье рассматриваются подходы к выявлению причинно-следственных связей, выделяются основные требования к построению этих связей в контексте сложных социогуманитарных систем, имеющих дело, в основном, со слабоструктурированной информацией, часто в виде естественного языка и текстов. Были определены слабые и сильные стороны выявленных подходов, а также рассмотрены примеры использования современных методов построения графов на разных задачах: выявление рисков в бизнесе, анализ социальных явлений, выявление наличия причинности в текстах. Исследование показало, что наиболее продуктивными являются методы машинного обучения, например языковые модели для извлечения знаний из текста в совокупности с нейросетевыми технологиями и графовым представлениями знаний. Они требуют уверенных знаний математики, статистики и программирования, как минимум на языке Python, имеющих самую внушительную инструментальную поддержку для решения задач машинного обучения. Также, выявление причинности основывается не только на корреляции, но и на других методах, таких как тест Грейнджера, используемый для анализа временных рядов.

Сохранить в закладках