Архив статей журнала

ПРИМЕНЕНИЕ ГЕНЕТИЧЕСКОГО АЛГОРИТМА ДЛЯ РЕШЕНИЯ ЗАДАЧИ ПОКРЫТИЯ ТЕРРИТОРИИ ГРУППОЙ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ ПРИ ПОДДЕРЖКЕ НАЗЕМНОЙ МОБИЛЬНОЙ ЗАРЯДНОЙ СТАНЦИИ: ФОРМИРОВАНИЕ ХРОМОСОМЫ (2024)
Выпуск: № 1 (2024)
Авторы: Магид Евгений Аркадьевич, Файзуллин Рамиль Фирдусович

Статья посвящена решению актуальной проблемы покрытия территории при помощи беспилотных летательных аппаратов (БЛА) с использованием мобильных зарядных станций. Современные практические задачи покрытия территории требуют одновременного участия нескольких БЛА с целью оптимизации временных затрат в ходе миссии. Другим ограничивающим фактором в контексте охвата территории с использованием БЛА является длительность автономной работы этих систем. Из-за ограниченной дальности полета на одном заряде батареи может возникнуть необходимость в использовании зарядных станций для завершения миссии охвата. Статичные зарядные станции позволяют зарядить аккумуляторы БЛА, однако это приводит к прерыванию миссии и увеличивает время, необходимое для завершения охвата. При использовании статичных зарядных станций важно так же правильно выбрать их местоположение, учитывая доступные места для установки. При этом сам процесс установки зарядных станций требует времени, что делает их использование нецелесообразным в миссиях, где покрытие территории нужно осуществить в кратчайшие сроки, например, при спасательных или поисковых операциях. Мобильные зарядные станции, которые способны перемещаться по территории для оптимизации процесса заряда или замены аккумуляторов БЛА лишены этих недостатков. Возникает задача планирования траекторий движения не только для БЛА, но и мобильной зарядной станции. При совместном планировании движения повышается эффективность охвата, но одновременно возрастает и вычислительная сложность при поиске траекторий. В настоящей статье решается задача эффективного покрытия территории с использованием нескольких БЛА и мобильной зарядной станции при помощи генетического алгоритма. Для адаптации задачи к использованию генетического алгоритма предлагается и обосновывается способ формирования хромосомы, которая корректно отражает решение задачи и позволяет закодировать траектории движения БЛА, мобильной зарядной станции, а также учитывает время и место проведения подзарядки или замены аккумулятора БЛА. Для исследования предложенного алгоритма разработано программное обеспечение на языке программирования Python. Адекватность предложенного подхода подтверждена результатами моделирования.

Сохранить в закладках
АЛГОРИТМ ПОСТРОЕНИЯ ТРАЕКТОРИИ ДВИЖЕНИЯ БЕСПИЛОТНЫХ АППАРАТОВ ДЛЯ МОНИТОРИНГА СОСТОЯНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ПОЛЕЙ (2024)
Выпуск: № 1 (2024)
Авторы: Румянцев Борис Вадимович, Кочкаров Азрет Ахматович, Прокопчина Светлана Васильевна

Организация непрерывного мониторинга значительных пространств с динамически меняющимися условиями и обстановкой является одной ключевых задач в различных направлениях жизнедеятельности человека. Особо остро эта задача стоит в России с учетом ее территорий (земель), предназначенных для сельскохозяйственной деятельности. Особую важность организации непрерывного мониторинга подчеркивает и развитие концепции и технологий точного земледелия. В качестве средств для решения этой системной задачи могут использоваться различные робототехнические и беспилотные системы, оснащенные необходимым оборудованием в соответствии с локальными задачами непрерывного мониторинга. Непрерывный мониторинг при этом может быть обеспечен только применением эффективных алгоритмов построения траектории движения используемых подвижных робототехнических и беспилотных (в первую очередь авиационных) систем. Повышение эффективности таких алгоритмов с математической точки зрения всегда усложняется цикличностью траекторий движения, т.е. построением гамильтонова цикла. В рамках данной работы предлагается метод конструирования оптимальной траектории движения при выполнении задач непрерывного циклического мониторинга сельскохозяйственных полей. Метод основан на поиске гамильтонова цикла на графе карты местности и позволяет автоматически строить оптимальный замкнутый путь для произвольной карты местности. Отличительной особенностью метода является использование модифицированного алгоритма поиска гамильтонова цикла. Алгоритм может быть масштабирован для карт, соответствующих графам с большим (более 100) количеством вершин, для которых стандартный алгоритм поиска гамильтонова цикла методом перебора требует значительно большего времени выполнения, чем предложенный алгоритм. Показано, что используемый алгоритм обладает в 17 раз меньшей константой роста временной сложности, чем стандартный алгоритм поиска гамильтонова цикла. Это позволяет увеличить количество вершин графа, используемого для поиска гамильтонова цикла в режиме реального времени (от 0.1 до 100 секунд), на порядок (от 30 до 500). Разработанный алгоритм может быть внедрён в современные беспилотные системы мониторинга состояния сельскохозяйственных полей для оптимизации траектории движения беспилотных аппаратов в режиме реального времени (0.1-100 секунд), внося тем самым вклад в динамично развивающуюся область точного земледелия.

Сохранить в закладках