ИЗВЕСТИЯ ЮФУ. ТЕХНИЧЕСКИЕ НАУКИ
Архив статей журнала
Современные технологические требования и развивающаяся городская инфраструктура ставят задачу разработки методов распознавания и классификации пожароопасных ситуаций. Быстрое и эффективное распознавание начальных признаков возгорания становится жизненно важным аспектом обеспечения безопасности людей, а также материальных ценностей. В связи с этим разрабатываются, реализуются, тестируются и внедряются системы, способные автоматически распознавать и классифицировать пожароопасные ситуации. Классификации пожароопасных ситуаций позволяет определить степень опасности обнаруженных отклонений, что способствуют к принятию более эффективных решений по предотвращению последствий пожаров и их признаков таких как, однократное кратковременное повышение температуры и уровня задымленности которое может указывать на выход из строя электрических компонентов, расположенных возле датчиков. Алгоритм классификации пожароопасных ситуаций разработан для комплекса взаимосвязанных датчиков, который в свою очередь, за счет своей структуры, позволяет обнаруживать даже малейший признака пожара. В рамках данного исследования приводится алгоритм классификации пожароопасных ситуаций на основе нейросетевых технологий. Приведено описание существующих классов пожароопасных ситуаций, а также критерии, по которым размечались данные по указанным классам. Проведено моделирование алгоритма на обучающей и тестовой выборках с приведением используемых параметров точности, формулой их расчетов, результатами классификации пожароопасных ситуаций. Проведено исследование влияния шага отсчета в выборке базы данных на параметры точности и время обучения нейронной сети. Разработанный алгоритм реализован на языке программирования Python в IDE PyCharm. Датасет для обучения и тестирования получены из реальных источников, содержащих информацию об обнаруженных пожароопасных ситуациях в метрополитенах, в которых установлен комплекс взаимосвязанных датчиков. Результаты моделирования алгоритма показали, что предложенный алгоритм обладает высокой точностью для предиктивной классификации пожароопасных ситуаций на реальных объектах.
Современные технологии и городская инфраструктура требуют инновационных подходов к обнаружению пожароопасных ситуаций. Эффективное и сверхбыстрое обнаружение возгораний становится неотъемлемой частью обеспечения безопасности. С этой целью синтезируются и реализуются системы способные обнаруживать и информировать об пожароопасной ситуации за считанные секунды, в статье синтезируется одна из таких систем. Исследование и синтез математической модели цифрового универсального пожарного датчика, который в свою очередь является комплексом взаимосвязанных датчиков, актуально в связи с постоянным развитием инфраструктуры систем, возрастающей сложностью электрооборудования и необходимость сокращению ущерба, возникающего при возникновении и распространении пожаров. Предиктивная диагностика работоспособности электрооборудования, позволяет своевременно выявлять и устранять потенциальные угрозы пожарной безопасности. В рамках данного исследование приводится теоретическая математическая модель реального цифрового универсального пожарного датчика, сперва в упрощенном варианте, затем в усложненном с учетом конструкции и статистического подхода к задаче нахождения порогов срабатывания датчика, приведено описание параметров математической модели и последовательного принципа работы. Данный датчик представляет собой инновационное решение в области пожарной безопасности, которое обеспечивает высокий уровень контроля и эффективности в реальном времени. На основе теоретических моделей, представленных в статье, разработана математическая модель датчика, которая смоделирована с использованием программного средства Simulink на реальных данных, полученных от производителя датчика. Результаты моделирования показали, что модель корректно описывает поведение реального датчика на всех каналах и может быть использована в дальнейших исследованиях, таких как прогнозирование и обнаружения пожароопасных ситуация с использованием нейронных сетей. Синтез предложенной системы необходим для дальнейших исследований в область прогнозирования и обнаружения пожароопасных ситуаций на основе полученной математического модели.
Целью исследования является разработка способа взаимодействия судна с подводным грузом для его приема и транспортировки. В статье представлены результаты создания комплекса подъема подводного груза на судно-носитель. Облик комплекса формировался на основе оценки возможных технических решений, проведения теоретических расчетов и моделирования. Выполнен анализ предыдущего опыта создания аналогов. Для стыковки с подводным грузом с судна-носителя опускается на четырех точках подвеса специальный приемный модуль, причем выбор сделан в пользу схемы тросового подвеса. Разработаны четыре механизма, составляющие основу комплекса - механизм подъема, механизм компенсации, механизм демпфирования и механизм фиксации. Основу механизма подъема составляют лебедки с электроприводом, использующие электрические асинхронные двигатели с векторным управлением. Канат механизма подъема заведен через полиспаст к грузу. Для компенсации возмущений, вызванных качкой судна-носителя, в разрыв канатной линии включена гидропневматическая система, которая парирует возникающие динамические нагрузки путем перемещения штоков гидроцилиндров. Механизм демпфирования поглощает энергию соударения платформы спускаемого модуля с корпусом судна-носителя в режиме причаливания. Механизм фиксации обеспечивает надежное крепление спускаемого модуля с подводным грузом или без него в походном положении с корпусом судна носителя. Модель асинхронного двигателя с короткозамкнутым ротором получена из обобщённой схемы, путем замыкания обмоток ротора накоротко. Предусмотрен частотный способ управления, за базовый вектор принят вектор потокосцепления ротора. В модели тросового подвеса учтена его деформация при движении в процессе эксплуатации. Модель механизма компенсации создана на основании адиабатического процесса в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством. В ходе расчетов и моделирования параметры узлов и механизмов подобраны таким образом, что обеспечиваются технически реализуемые условия функционирования комплекса. При этом ограничены нагрузки на тросовую систему и исключены ее провисания, ход каретки компенсатора минимизирован. В результате был получен квазиравномерный подъем подводного груза с незначительными колебаниями скорости при качке судна-носителя.