СИСТЕМЫ. МЕТОДЫ. ТЕХНОЛОГИИ
Архив статей журнала
В статье рассматриваются аспекты, связанные с применением нейронной сети для прогнозирования и оценки эксплуатационных характеристик шпиндельного узла металлорежущего станка. Проводится анализ применения нейронных сетей для решения задач прогнозирования состояния и проектирования конструкций сложных технических объектов. Показано планирование эксперимента с использованием языка Python с реализацией применения генератора псевдослучайных чисел Вихря Мерсенна и описан этап сбора экспериментальных данных для обучения нейронной сети. Приводится настройка модуля Neural networks математического пакета Statistica, в котором осуществлялись построение и обучение нейросети. Показан алгоритм выбора наилучшей нейронной сети по критериям ее производительности и ошибки обучения на тестовом множестве. Выбрана сеть со структурой на основе многослойного персептрона, прогнозирующая работу шпиндельного узла с учетом взаимного влияния факторов - частоты вращения шпинделя (n), времени работы станка (tm) и нагрузки на передний конец шпинделя (P) на выходные переменные - температуру наружного кольца подшипника (T), радиальное биение (Δ) и упругое смещение переднего конца шпинделя (E). Математическая оценка данной сети показала весьма высокую корреляционную связь для переменных T и E и заметную для Δ. При анализе чувствительности переменных видно высокое влияние переменной n и низкое, почти шумовое, - переменной tm. Средняя относительная ошибка сети на тестовом множестве не превысила 10,7 %. Приведенный пример использования построенной нейронной сети и его анализ доказали высокое качество сети со средней относительной ошибкой по отдельным переменным, не превышающей 9,8 %.
Целью данного исследования является повышение эффективности энергообеспечения технологических процессов в лесном комплексе путем разработки автономного источника энергии на древесном топливе. В работе выполнен обзор применяемых технологий и перспективных разработок в мире и в России для производства электрической энергии на основе древесного топлива на электростанциях малой мощности. Выявлена перспективность применения энергоустановок на основе газовых турбин для преобразования энергии древесных отходов лесозаготовок и лесопиления с целью производства электрической энергии - как использующих продукты прямого сгорания древесины, так и с использованием промежуточной газификации твердого древесного топлива. Также рассматривался вопрос перспективности применения в лесном комплексе оборудования с электрическим приводом вместо двигателя внутреннего сгорания на традиционном моторном топливе. Для достижения поставленной цели в работе решались задачи имитационного моделирования мини-электростанции на древесных отходах. Полученные результаты имеют практическое значение для прогнозирования показателей автономных источников энергии в лесном комплексе на основе газовых турбин и турбин органического цикла Ренкина на древесном топливе при работе в различных условиях окружающей среды. Результаты имитационных экспериментов в виде основных технологических параметров и параметров эффективности мини-электростанции на генераторном газе из древесины могут быть использованы при проектировании подобных энергоустановок, обосновании целесообразности их разработки, а также применения на том или ином объекте лесного комплекса при определении возможного эффекта от замены энергоустановок на невозобновляемом топливе. В результате численных экспериментов определены давления, температуры, расходы рабочих тел тепловых двигателей и теплоносителей, мощности и КПД мини-электростанции. Определены зависимость параметров от температуры наружного воздуха, а также влияние приставки органического цикла Ренкина на КПД газотурбинной установки.
Создание гибридных энергокомплексов - важное направление, позволяющее повысить надежность, экологическую и экономическую эффективность электроснабжения потребителей. Гибридные энергокомплексы внедряются в изолированных и труднодоступных районах, а также в районах с низкой надежностью электроснабжения или высокой стоимостью электроэнергии. Выбор состава оборудования гибридных энергокомплексов является многокритериальной задачей, так как сопряжен с учетом экономических, технических, экологических факторов. В статье предлагается подход к оптимизации состава оборудования гибридного энергокомплекса на основе генетического алгоритма и метода простого аддитивного взвешивания. Генетический алгоритм обеспечивает формирование конфигураций гибридного энергокомплекса и поиск оптимального или близкого к нему решения. Метод простого аддитивного взвешивания используется для многокритериального оценивания конфигураций, формируемых генетическим алгоритмом. Для расчета показателей гибридного энергокомплекса разработана имитационная модель его функционирования на основе системы правил. Имитационная модель учитывает технологические ограничения оборудования и замену компонентов гибридного энергокомплекса. В результате применения модели оцениваются технические, экономические и экологические показатели функционирования за рассматриваемый период с часовой детализацией. Предложенный подход к выбору состава оборудования гибридного энергокомплекса реализован в среде разработки Python. Применение предложенного подхода рассмотрено на примере удаленного населенного пункта Озерпах Хабаровского края. В составе гибридного энергокомплекса рассматриваются дизельные генераторы, ветроэнергетические установки, фотоэлектрические преобразователи, аккумуляторные батареи, инверторы. В качестве критериев используются следующие показатели: нормированная стоимость производства электрической энергии, капитальные затраты, недоотпуск электроэнергии потребителям и выбросы диоксида углерода. Результаты многокритериального выбора показали, что формируемые конфигурации соответствуют задаваемой структуре предпочтений лица, принимающего решения.
Представлены результаты разработки цифровых моделей для определения электромагнитных влияний (ЭМВ) тяговых сетей (ТС) с разной структурой на параллельно проложенный трубопровод наземной прокладки. Для их реализации применялся программный продукт Fazonord, версия 5.3.3.0-2024, позволяющий определять ЭМВ ТС различного конструктивного исполнения на находящиеся вблизи трассы железной дороги протяженные проводящие сооружения, в частности, стальные трубопроводы. Моделирование осуществлялось для системы электроснабжения горно-перевального участка общей протяженностью 76 км. В ее состав входили следующие элементы: две линии электропередачи 220 кВ; пять ЛЭП 110 кВ и столько же подстанций с трансформаторами ТДТНЖ-40000-115/27,5/11; тяговые сети 27,5 кВ пяти межподстанционных зон. В модель ТС второй зоны был включен стальной трубопровод, проложенный на расстоянии 50 м и имеющий стационарные заземлители по краям с сопротивлением 1 Ом. Также учитывалось распределенное заземление путем формирования цепочечных схем замещения. Рассматривались следующие структуры ТС: раздельная, узловая, встречно-консольная и параллельная. Тяговые нагрузки создавались грузовыми поездами массой 4 084 и 6 000 т. Электромагнитные поля, генерируемые ТС, создавали на деталях сооружения напряжения, превышающие допустимую величину 60 В. Обеспечить их снижение можно установкой дополнительных заземлителей, увеличением ширины сближения, монтажом экранирующих проводов, а также отсасывающих трансформаторов. Предложенная методика предназначена для использования в проектировании и эксплуатации при разработке рациональных способов уменьшения ЭМВ ТС с целью обеспечения безопасности персонала и надежной работы средств защиты труб от коррозии.
Представлены результаты исследований, направленных на разработку цифровых моделей для определения режимов систем электроснабжения железных дорог (СЭЖД), оснащенных ветрогенераторами. Для реализации моделей применялись методы, базирующиеся на использовании фазных координат, что позволило обеспечить системность, универсальность и комплексность. Системный подход достигался на основе учета всех значимых свойств сложной СЭЖД и питающей электроэнергетической системы. Универсальность обеспечивалась за счет моделирования тяговых сетей, ЛЭП и трансформаторов различного конструктивного исполнения. Комплексность давала возможность определения нормальных, аварийных и особых режимов СЭЖД. Подчеркнуто, что использование ветрогенераторов может осуществляться по следующим направлениям: электроснабжение объектов, расположенных в регионах с неустойчивым энергообеспечением; повышение надежности питания потребителей, отключение которых может привести к тяжелым последствиям; обеспечение энергией объектов относительно небольшой мощности. Моделирование режимов проведено в двух вариантах. В первом рассматривалась типовая СЭЖД, в которой отсутствовали установки собственной генерации. Во втором - выполнено моделирование СЭЖД с ветрогенераторами, подключенными на шины 6 кВ тяговых подстанций. Однофазные электровозы создают значительную несимметрию на шинах 6 кВ тяговых подстанций, что может оказывать негативное воздействие на оборудование ветрогенераторов. Для ее устранения использовались пофазно управляемые источники реактивной мощности, позволяющие снизить несимметрию до допустимых пределов. Результаты моделирования показали, что на основе ветроэнергетических установок возможно уменьшить поступление электроэнергии из сетей энергоснабжающей организации, повысить надежность электроснабжения ответственных потребителей за счет резервирования ветрогенераторами, улучшить качество электроэнергии в сетях, питающих стационарные объекты железнодорожного транспорта.
В статье обоснованы оптимальные параметры элементов подрессоривания колесного трактора на основе анализа его динамических качеств методом построения модели функционирования агрегата. Колебания трактора оказывают вредное влияние на условия труда тракториста и динамическую нагруженность ходовой части, приводят к снижению производительности. В исследованиях [12; 14] при работе трактора на неподготовленной почве величина амплитуды динамических колебаний превышает на 6,3 % таковые при работе такого же трактора в условиях подготовленной почвы. Это приводит к снижению производительности на 43 %, а также снижает ресурс ходовой части на 3,1 моточаса. В работах [12; 14] обосновано, что работа тракторов в условиях повышенных динамических нагрузок, обусловленных плохим состоянием транспортного пути, приводит к ухудшению состояния транспортируемого груза. Следует отметить существование методик, например [1; 2], позволяющих с достаточной для определенного круга задач точностью оценить динамическую нагруженность силовой цепи трактора и без знания параметров процесса взаимодействия движителя с почвогрунтом. Применение этих методик связано с другой трудностью, состоящей в достоверной оценке процессов изменения податливости и характеристик демпфирования системы «движитель - грунт», поскольку физико-механические свойства взаимодействующего с движителем трактора почвогрунта неоднородны и зависят от большого количества факторов. При алгоритмизации модели функционирования за основу принят известный математический аппарат для расчета передаточных функций трехмассовых колебательных систем. Рассмотрен расчетно-экспериментальный метод оценки динамических явлений при взаимодействии гусеничного движителя трактора с почвогрунтом. Получены реализации и вероятностно-статистические характеристики изменения момента сопротивления в гусеничном движителе. Предлагаемая методика может быть использована при отработке научно-обоснованных нормативов режимов эксплуатации и параметров безопасности мобильных лесохозяйственных агрегатов.
Для отделочных операций применяются комбинированные методы обработки, в том числе электроалмазная обработка. Этот метод имеет следующие недостатки: засаливание электрода-инструмента, скругление режущей кромки, изменение микротвердости, микрорастравливание, отклонение формы обрабатываемой поверхности. В ранее проведенных исследованиях электроалмазной обработки основное внимание уделено вопросам засаливания алмазного шлифовального круга, удельному расходу круга и состоянию поверхности. Для выявления причин появления недостатков (микрорастравливание поверхности детали) проведен анализ источников тока в электрохимической системе. Результаты исследований показали, что плотности токов от гальванических элементов, образованных между катодом-инструментом и анодом-заготовкой и между фазами обрабатываемой заготовки, на порядок меньше плотности технологического тока. Такие токи за время обработки не более 3 мин не могут привести к микрорастравливанию. Этот дефект может возникнуть при длительном хранении деталей во влажной среде. По результатам работы были определены размеры моделируемой системы, в частности, максимальный рекомендуемый межэлектродный зазор 0,1 мм и область влияния разнородности контактов на электрохимический процесс в пределах 5-6 мм. При электроалмазной обработке в зазоре между инструментом и деталью образуется металлическая стружка, которая способствует увеличению напряженности электрического поля выше критического значения, что приводит к пробою межэлектродного зазора и появлению электрической эрозии. Кроме того, стружка может создать металлический мостик, в результате чего появляется локальный электроконтактный процесс. Эти явления приводят к образованию жидкого металла. Проведенные исследования показали, что причиной засаливания является образование жидкого металла и его налипание на медную поверхность.
Развитие искусственного интеллекта практически во всех сферах человеческой интеллектуальной деятельности предполагает расширение инструментов инженерного анализа, а также увеличение темпов роста программного обеспечения в области машиностроения. Главным преимуществом этого станет сокращение экономических затрат на разработку машиностроительной продукции, ее физические испытания и отбраковку физических прототипов. В данной статье представлены результаты моделирования растравленного слоя поверхности быстрорежущей стали Р6М5 в результате воздействия на нее электрических факторов процесса резания и электролита. Созданы контактирующие поверхности - модель алмазного зерна как элемент алмазного шлифовального круга и модель обрабатываемой поверхности быстрорежущей стали Р6М5 как элемент металлорежущего инструмента. Для решения задачи контактного взаимодействия при комбинированной электроалмазной обработке двух ювенильных поверхностей была выбрана универсальная программная система конечно-элементного анализа Ansys Workbench. Основное моделирование процесса резания было проведено на трех величинах глубины резания t: 0,01; 0,02 и 0,03 мм/дв.ход. Было учтено влияние на модель обрабатываемой поверхности двух электрических факторов обработки - плотности тока правки iпр = 0,25 А/см2, плотности тока растравливания iтр = 6,25 А/см2 и воздействие электролита. Были учтены результаты сравнительного анализа химического состава передней поверхности быстрорежущих пластин до и после электрохимической обработки. Сделан вывод о том, что характеристики растравленного слоя во время комбинированной электроалмазной обработки уменьшаются в своих свойствах примерно на 10 %, что и вызывает эффект растравливания поверхности. В результате комплексных исследований была решена задача выбора и моделирования такой структуры, которая бы имитировала механические свойства материала растравленного слоя обрабатываемой поверхности быстрорежущей стали при комбинированной электроалмазной обработке. Моделирование показывает, что оптимальная глубина резания t должна находиться в пределах 0,015-0,020 мм/дв.ход. В этом случае происходит менее нагруженный напряжениями процесс резания с полноценным стружкообразованием. Полученные результаты моделирования можно применять для дальнейшего прогнозирования, например, качества обработанной поверхности путем подбора технологических режимов обработки, на которых происходит активация процесса самозатачивания алмазных зерен.
Мониторинг состояния - одна из основных задач, возникающих в настоящее время при эксплуатации механообрабатывающего оборудования. Предупредительное техническое обслуживание приобретает все более важное значение для минимизации риска простоев в промышленном секторе производства. Превышение предельных значений по общему уровню вибрации и неравномерности различных частот указывает на износ инструмента, подшипников, разбаланс или ослабление крепления деталей. В статье рассматриваются результаты разработки и испытаний виброизмерительного датчика на основе МЭМС-акселерометра для контроля параметров вибрации механообрабатывающего центра в различных режимах работы. Выполнен сравнительный анализ характеристик, имеющихся на российском и зарубежных рынках МЭМС-акселерометров, пригодных для использования в системах мониторинга вибрации промышленного оборудования. По сравнению с пьезоэлектрическими датчиками МЭМС-акселерометры имеют более высокое разрешение, отличные характеристики дрейфа и чувствительности и лучшее отношение сигнал/шум. Они также позволяют обнаруживать колебания с низкими частотами, что характерно для тихоходного оборудования. Проведено экспериментальное сравнение показаний разработанного датчика на основе МЭМС-акселерометра с показаниями пьезоэлектрического вибропреобразователя АР2085-100 в процессе механообрабатывающих операций резания. Приведены временные осциллограммы и спектральные составы виброускорений шпиндельного узла во время резания, полученные разными типами датчиков. Отклонения значений СКЗ виброускорений на этапе резания составляют менее 5 %. В результате проведенных исследований было выявлено, что разработка датчика измерения вибрации на основе МЭМС-акселерометра ADXL1002 способна эффективно заменить стандартные пьезоэлектрические датчики. Измерение пространственных вибрационных параметров при работе механообрабатывающих центров позволяет повысить качество обработки деталей и предотвратить работу дорогостоящего станочного оборудования при опасных динамических нагрузках, а также обеспечивает возможность перехода от планово-диагностического к обслуживанию по фактическому состоянию.
Предложена дискретная модель бурильной колонны с роторным способом бурения при постоянной силе натяжения каната подвеса. Инерционные и упругие свойства колонны учтены в виде прямолинейной цепочки цилиндрических элементов, связанных между собой пружинами растяжения-сжатия и кручения. Каждый элемент заменяет одну или нескольких бурильных труб, в зависимости от степени приближения к бурильной колонне - как системы с равномерно распределенной инерцией по всей длине. Жесткость пружин определяется упругими свойствами труб, а сами элементы считаются не упругими. Предполагается, что каждый элемент цепочки может перемещаться вдоль оси вертикальной скважины и совершать вращательное движение вокруг этой оси. Ведущая труба бурильной колонны закручивается с постоянной угловой скоростью, а с нижней утяжеленной трубой жестко связано долото, оказывающее дробяще-скалывающее действие на породу в забое при вращении. Для долота сила и момент лобового сопротивления со стороны забоя скважины определяются с учетом нелинейной зависимости от скорости погружения инструмента и потери прочности породы от создаваемого силового воздействия - непрерывного при вращении и импульсивного при возможных ударах. Для долота учитывается возможность возникновения жестких эффектов stick-slip, когда его погружение или вращение прерываются микроударами остановок. Описываются крутильно-продольные автоколебания без учета возможности контактов отдельных цилиндрических элементов со стенкой скважины и допускается нарушение контакта долота с забоем скважины, завершающееся ударом. Дан полный алгоритм численного моделирования возникающих автоколебаний для предложенной модели.
- 1
- 2