ВЕСТНИК АСТРАХАНСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА. СЕРИЯ: УПРАВЛЕНИЕ, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНФОРМАТИКА
Архив статей журнала
При разработке высокоавтоматизированных и беспилотных транспортных средств автоиндустрия столкнулась с новым комплексом проблем, связанным с необходимостью стандартизации элементов систем автоматизированного вождения и определения правил их испытаний и сертификации. В связи с ускорением научно-технического прогресса и развитием новых технологий применяемые ранее стандарты стали устаревать по мере накопления практики их применения, а иногда и до утверждения того или иного технического регламента. В этих условиях перспективным техническим и юридическим решением может стать применение нечеткой логики в инструментах агрегации и управления экспертными знаниями в процессах сертификации и испытаний высокоавтоматизированных транспортных средств и элементов систем их автоматизированного управления. В нечетких моделях принятия решений используются типовые нечеткие ситуации, которые формируют каталоги сценариев для проведения испытаний автомобилей и их систем. Таким образом может формироваться база знаний экспертной системы, в которой инженеры по знаниям применяют набор параметров сценария испытания или эксперимента, для испытаний и имитационного моделирования. Определение параметров нового сценария, их схожесть с ранее формализованными сценариями и решение о включении того или иного сценария в каталог сценариев остается за экспертами. Применяемые на современном этапе подходы к формализации знаний экспертов не приемлемы для создания баз знаний под управлением систем управления большими данными или искусственными нейронными сетями, за которыми ближайшее будущее в развитие экспертных систем. Предлагается метод, с помощью которого инженеру знаний, администрирующему экспертную систему, можно автоматизировать создание каталога «нечетких» сценариев испытаний и имитационного моделирования систем посредством автоматического поиска максимального значения принадлежности состояний этих систем к картам и каталогам сценариев, с заданной экспертом вероятностью, с использованием методов машинного обучения.