РОБОТОТЕХНИКА И ТЕХНИЧЕСКАЯ КИБЕРНЕТИКА
Архив статей журнала
Статья посвящена актуальной на сегодняшний день теме - проблеме применения роботов в атомной отрасли, в частности на модуле фабрикации и рефабрикации плотного смешанного уран-плутониевого топлива (МФР) опытно-демонстрационного энергокомплекса (ОДЭК) АО «СХК». Автор объясняет это опасностью или невозможностью прямого участия человека в некоторых операциях, связанных с воздействием высоких дозовых нагрузок и токсичностью на организм. Поэтому автор говорит о необходимости применения технологий опосредованного управления рядом процессов или их автоматизации, частичной либо полной. Особое внимание в статье уделено тому, что роботов внедряют не в готовые технологические линии, а сразу, на этапе проектирования, создают роботизированное производство топлива. Автор прогнозирует, что одним из преимуществ применения роботов будет поддержание качества продукции на более стабильном уровне. В статье раскрывается то, что на МФР роботы-манипуляторы, автоматизированные управляемые (АУТ) и передаточные тележки будут применяться в основном технологическом процессе на операциях по изготовлению тепловыделяющих сборок (ТВС), при обращении с радиоактивными отходами (РАО) и на линиях автоматизированных транспортных систем. Растущая потребность в решении задач вывода из эксплуатации объектов использования атомной энергии (ОИАЭ) требует новых подходов в их реализации, в том числе для минимизации работы человека непосредственно в условиях повышенного радиационного фона. В качестве таких подходов предполагается использование современных робототехнических технологий, позволяющих высокоэффективно решить задачи всех этапов вывода из эксплуатации объектов использования атомной энергии, тем самым достигая комплексного подхода в их решении и формировании задела на будущее. Внедрение робототехнических комплексов в рамках федерального проекта имеет не только прикладное значение в сфере вывода из эксплуатации ОИАЭ с точки зрения эффективности использования ресурсов, оптимизации затрат и скорости выполнения проектных работ, но и создает условия для реализации стратегически важных для России задач в социальной и экономической сферах.
Статья посвящена особенностям методов синтеза управления (супервизора) для системы группового управления мобильными роботами. Верхние уровни системы группового управления рассматриваются как дискретно-событийная система. Представлены некоторые известные методы синтеза супервизора для дискретно-событийной системы, приведены оценки их вычислительной сложности. Для применения при проектировании дискретно-событийной системы группового управления выбран наилучший по критерию вычислительной сложности метод. Указаны ограничения выбранного метода, связанные с управлением независимыми действиями роботов при выполнении группового действия. Предложены модификация метода и расширение синтаксиса описания требуемого поведения (спецификации), которые позволяют снять указанные ограничения без увеличения вычислительной сложности. Применение модифицированного метода продемонстрировано на примере синтеза супервизора для группового действия выхода на рубеж с последующим тушением очага пожара тремя роботами.
Развитие технологий робототехники требует повышение уровня научно-технических разработок и создание профильного задела, а также формирования системы подготовки высококвалифицированных специалистов. Одним из способов оценки достигнутого уровня разработок и квалификации инженерных команд является проведение соревнований различного уровня. В статье представлен обзор различных мероприятий по соревновательной робототехнике. В третьей части рассмотрены соревнования в водной среде. Соревнования структурированы по формату проведения, среде функционирования и возрасту участников. Сделаны выводы о перспективах различных мероприятий соревновательной робототехники, а также актуальности некоторых из них. Представлены взаимосвязи достигаемых компетенций при участии в соревнованиях по различным направлениям, а также делается вывод о необходимости проведения профориентационной работы.
Рассматриваются сложные робототехнические системы, их свойства, признаки и взаимодействия, предложено определение сложной системы на основе 5-ти свойств: открытости, неизоморфной изменчивости трех видов (структурной, пространственной и информационной), двойного кода, агрегирования событий и нарушения физических симметрий. Влияние нарушений физических симметрий на определение оптимальных траекторий управления сказывается в парадигме подхода к исследованиям сложных робототехнических систем, которые не формализуются как математические объекты. Сформулированы основные понятия, постулаты и гипотезы. Описаны идеальные конструкции изменчивости сложных систем; энергетических причинных множеств; энергии; событий, причин, следствий и эволюций; пространства-времени, квантов и вакуумов; взаимодействия индивидов; операторов физических взаимодействий, агрегированных событий, текстов и вложений слов. Предложены и кратко описаны три основные модели для исследования сложных систем - модель физических взаи-модействий, нейролингвистическая модель и модель управления при неполной совместимости. Приведена структура ядра платформы физического имитационного моделирования для исследований сложных систем. Описаны три типа квантов моделирования по пространству-времени - минимальный, семантический и эволюционный. Дана иллюстрация результатов применения предложенного подхода к исследованию действий сложных систем. Отмечено, что образующаяся математическая структура проявляет свойства фрактала. Выделены типовые траектории эволюции - «гомеостат»; «затухание действий»; «инвариант»; «катастрофа»; «окно возможностей». Приведен ряд принципов исследований сложных систем методологического и методического характера. Даны рекомендации по области применения предложенного подхода.
В работе рассмотрена содержательная и формальная постановки проблемы синтеза системы управления группой наземных робототехнических комплексов (РТК). Проведена декомпозиция данной проблемы на ряд частных научных задач: задачу обоснования структуры системы управления, разработку метода определения эмерджентности системы управления и разработку метода оценки качества системы управления и эффективности её применения. Показано, что отличительными чертами данной проблемы являются: стохастический характер показателя эффективности - вероятности достижения цели операции, неопределенность условий применения группы РТК и большой размер пространства проектирования системы управления. Проблема роста пространства проектирования продемонстрирована методическим примером. Для снижения трудоёмкости анализа размера пространства проектирования автором настоящей статьи предлагается использование декомпозиционного подхода, который заключается в обосновании «опорного» (базисного) варианта структуры системы управления и начальной её декомпозиции. Новизна в реализации подхода заключается в совместном рассмотрении «метода группового управления» и принципа иерархической структуризации системы группового управления. Такой подход позволяет обоснованно получить базисные решения по структуре системы управления, что, в свою очередь, позволяет осуществлять в дальнейшем параметрический синтез систем управления и проводить сравнительную оценку решений по критерию «качество-стоимость».
Перспективным направлением развития современных робототехнических систем является повышение автономности роботов. Среди различных видов автономности ситуационная автономность [2] представляет наиболее значимый вызов для разработчиков. Гибкое и устойчивое автономное функционирование робототехнических комплексов (РТК) в незнакомых, ранее не встречавшихся ситуациях обеспечивается реализацией процедур адаптации, а в пределе - самоорганизации (самообучения) в системах управления РТК. Особенно остро потребность в адаптивных системах управления проявляется при автономных действиях в боевой обстановке, где среды являются высокодинамичными, а причинами неопределенностей ситуаций могут быть непредсказуемость поведения противника, несовершенство бортовых информационно-измерительных средств и алгоритмов, сложная помеховая обстановка и др. Ситуация усугубляется групповым применением роботов, при котором человек-оператор (или их группа) в силу ограниченных психофизиологических возможностей не в состоянии координировать работу множества роботов одновременно [3]. В таких условиях РТК может оказаться бесполезным средством вооруженной борьбы, не способным частично или в полном объеме выполнить поставленную боевую задачу. Приведенные обстоятельства вызывают настоятельную необходимость создания адаптивных (самообучающихся) систем управления РТК, способных формировать рациональные, а в пределе - оптимальные с точки зрения успешного выполнения поставленной боевой задачи управленческие решения в неопределенных боевых ситуациях. В статье рассматривается один из возможных подходов к созданию самообучающихся, адаптивных в широком смысле слова систем управления РТК на основе технологий вывода решений по аналогии.
В настоящей статье представлены результаты экспериментального и расчетного моделирования движения рыбоподобного подводного робота. Экспериментальная 3D модель сконструирована по фотографиям тихоокеанского голубого тунца. Данная модель позволяет исследовать биоморфное плавание с различными параметрами движения, а именно: амплитуда и частота взмахов задается управляющим сигналом сервопривода, угол между хвостовым плавником и упругой пластиной задается количеством и жесткостью пружин в шарнире. Расчетная методика предполагает совместное решение уравнений динамики робота и уравнений гидродинамики жидкости, обтекающей его. Для данной задачи был разработан оригинальный алгоритм деформации сетки, позволяющий вести гидродинамические расчеты вблизи хвоста модели, совершающего поперечные колебания. Использование технологии деформируемых сеток позволяет максимально точно воспроизводить форму колебаний хвоста. К тому же, расчетная схема обладает свойством консервативности, что позволяет получать высокое качество расчета, подтвержденное сравнением с экспериментальными данными.
Развитие технологий робототехники требует повышение уровня научно-технических разработок и создание профильного задела, а также формирования системы подготовки высококвалифицированных специалистов. Одним из способов оценки достигнутого уровня разработок и квалификации специалистов и инженерных команд является проведение соревнований различного уровня. В статье продолжен обзор различных мероприятий по соревновательной робототехнике в части состязаний специальных и спасательных роботов в наземной и подземной средах. Соревнования структурированы по формату, типу проведения, среде функционирования и возрасту участников. Сделаны выводы о перспективах различных мероприятий соревновательной робототехники, а также актуальности некоторых из них.