Архив статей журнала

АЛГОРИТМ ОБЕСПЕЧЕНИЯ ТРЕБУЕМОГО УРОВНЯ УСТОЙЧИВОСТИ УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ В УСЛОВИЯХ ПРОТИВОДЕЙСТВИЯ (2022)
Выпуск: T. 35 № 1 (2022)
Авторы: Белоножко Дмитрий Григорьевич

Предлагается алгоритм обеспечения требуемого уровня устойчивости управления беспилотным летательным аппаратом в условиях противодействия. Под внешним воздействием понимаются как преднамеренные деструктивные воздействия внешней среды, так и непреднамеренные. Устойчивое управление беспилотным летательным аппаратом рассматривается как способность управляющих органов выполнять свои функции в сложной, резко меняющейся обстановке, в условиях помех, воздействия противника (огневого, радиоэлектронного и др.) и технических отказов, сохраняя в установленных пределах значения всех показателей управления соответственно. В качестве преднамеренных деструктивных воздействий внешней среды, угрожающих устойчивости управления беспилотным летательным аппаратом при автоматическом управлении, рассмотрены средства огневого и физического поражения, радиоэлектронного подавления, а также функционального поражения электромагнитным и лазерным излучением. В зависимости от вероятности поражения беспилотного летательного аппарата в результате преднамеренного деструктивного воздействия внешней среды сформированы зоны, характеризующие влияние средств воздействия на уровень боеспособности беспилотного летательного аппарата. Определен допустимый уровень вероятности устойчивого управления, удовлетворяющий требованиям его боеспособного состояния. С целью обеспечения требуемого уровня устойчивости управления беспилотным летательным аппаратом использован принцип адаптивного управления, заключающийся в изменении параметров его движения, для реализации возможности облета опасных зон. Вычисление параметров управления движением беспилотного летательного аппарата осуществляется с использованием математической модели динамики его бокового движения. Параметры управления движением беспилотного летательного аппарата формируются в виде суммы программного управления и корректирующего, вычисленных через требуемые параметры движения аппарата. Предложенный алгоритм учитывает возможное преднамеренное деструктивное воздействие внешней среды, может быть реализован с помощью микроконтроллеров современных беспилотных летательных аппаратов и не предполагает внесения изменений в их конструкцию. Реализация алгоритма в автоматизированных системах управления беспилотным летательным аппаратом позволит эффективно решать задачи воздушной разведки в условиях противодействия для вычисления требуемых параметров движения и соответствующего текущей обстановке управления.

Сохранить в закладках
МОДЕЛИРОВАНИЕ СТРУКТУРЫ ИМПОРТОЗАМЕЩЕНИЯ НА БАЗЕ МОДЕЛИ СИСТЕМЫ ОПТИМАЛЬНОГО РАСПРЕДЕЛЕНИЯ (2023)
Выпуск: Т. 36 № 4 (2023)
Авторы: Абу-Абед Фарес Надимович, Жиронкин Сергей Александрович

Предметом данного исследования является модель системы оптимального распределения инвестиций в экономике, испытывающей потребность в импортозамещении в условиях внешних шоков и санкций. Необходимо построить математическую модель, связывающую отраслевую структуру инвестиций и выпуска, с учетом технологических ограничений. В настоящей статье исследуются возможности применения моделей структуры и динамики экономики для целей импортозамещения, использования в этих целях производственной функции, динамических стохастических моделей общего равновесия и байесовских векторных авторегрессий. Авторский метод, представленный в статье, основан на построении дерева решений для перебора циклов обхода - вариантов маршрута с отсечением. Метод может быть модифицирован для сокращения времени его работы. Рекомендуемая технология построения модели структуры импортозамещения сводится первоначально к построению ее целевой функции и представлению в виде графа. Впоследствии на основе структуры данных, позволяющих строить маршруты, авторами был представлен алгоритм, который является основой для реализации оптимального распределения инвестиций в отраслевой структуре и контроля их соответствия обозначенным требованиям импортозамещения. На базе данного алгоритма разработаны архитектура и структура программного средства с соответствующими классами, которое обеспечивает выходные данные в виде соответствия «инвестиции-отрасль». Полученные результаты необходимы для разработки программного средства, позволяющего решить важную отраслевую задачу моделирования структуры импортозамещения на основе распределения инвестиций по отраслям и продуктам, а также прогнозировать воздействие на этот процесс новых внешних шоков и технологических ограничений, изменения производительности труда и уровня загрузки производственных мощностей.

Сохранить в закладках
АЛГОРИТМ И ПРОГРАММНАЯ РЕАЛИЗАЦИЯ СИНТЕЗА МОДЕЛИ ОБЪЕКТА ИСПЫТАНИЙ НА ОСНОВЕ РЕШЕНИЯ УРАВНЕНИЯ НЕПАРАМЕТРИЧЕСКОЙ ИДЕНТИФИКАЦИИ (2023)
Выпуск: T. 36 № 2 (2023)
Авторы: ГУСЕНИЦА Ярослав Николаевич, Мингачев Э. Р., Исхаков Н. У., Колоколов М. И.

Настоящая работа посвящена развитию теории испытаний в целом и опытно-теоретического метода в частности. Авторами разработан алгоритм синтеза модели объекта испытаний, основанный на решении уравнения непараметрической идентификации динамической системы с использованием гипердельтной аппроксимации и преобразования Лапласа. В отличие от существующих данный алгоритм применим для входных и выходных сигналов произвольной формы и физических величин. Кроме того, он не требует больших вычислительных ресурсов. Алгоритм позволяет формализовать многомерную зависимость между факторами и тактико-техническими характеристиками объекта испытаний. С помощью языков программирования C++ и Python реализованы математическая библиотека идентификации модели объекта испытаний и приложение с графическим пользовательским интерфейсом для автоматизации расчетов. Представленное программное решение выполнено по аналогии с классическими моделями машинного обучения. Для обоснования возможности применения разработанного алгоритма проведен вычислительный эксперимент на различных типах входных и выходных сигналов (периодических, непериодических и случайных) с разной точностью гипердельтной аппроксимации. По результатам вычислительного эксперимента получены рекомендации по использованию алгоритма, в частности, при высоких амплитудах выходного сигнала следует увеличить количество начальных моментов гипердельтной апроксимации.

Сохранить в закладках