ПРОГРАММНЫЕ ПРОДУКТЫ И СИСТЕМЫ
Архив статей журнала
Задача детектирования объектов является общей для любого типа изображений, отличаются только показатели качества детектирования и технологическое обеспечение процесса. Базой для данного исследования послужили материалы аэрофотосъемки промышленных объектов. Камеральная обработка снимков аэрофотосъемки путем перекрытия исходных фотоснимков для получения ортофотопланов отснятой местности является сложным и затратным процессом, автоматизация которого носит фрагментарный характер. Настоящая статья содержит решение по автоматизации этапа построения контуров промышленных объектов в рамках процесса их детектирования на ортофотоплане. В качестве подхода, обеспечивающего автоматизацию, использовано моделирование обученной сверточной нейронной сети с одноэтапным прохождением по SSD-алгоритму и на основе метода обратного распространения ошибки. Результатом работы стал программный комплекс, способный выделить и классифицировать несколько объектов на ортофотоплане. Описаны типы и способы хранения генерируемых данных для оптимальной работы с программным комплексом, а также процесс перехода от системы координат снимка к пространственной системе координат с использованием файлов привязки ортофотопланов. Практическая значимость результатов заключена в том, что все шаги по разработке программного комплекса описаны: приведено обоснование выбора технологий и алгоритмов, выявлены и сформулированы требования к программному комплексу, описан процесс обучения нейронной сети, приведена структура проекта. Это позволяет не только воспроизвести предложенное решение задачи автоматизации, но и масштабировать его с учетом входных параметров детектирования промышленных объектов на ортофотопланах.