ПРОГРАММНЫЕ ПРОДУКТЫ И СИСТЕМЫ
Архив статей журнала
В статье рассматриваются вопросы реализации прототипа исследовательско-практического комплекса для автоматизации анализа аккаунтов пользователей в социальных сетях. Данный прототип используется в качестве инструмента для косвенной оценки выраженности психологических особенностей пользователей, их уязвимостей к социоинженерным атакам и выработки рекомендаций по защите от них. Прототип разработан на языке программирования Python 3.8 с применением веб-фреймворка Django 3.1, а также PostgreSQL 13.2 и Bootstrap 4.6. Цель работы заключается в повышении оперативности процесса извлечения информации из размещаемых в социальных сетях данных, позволяющей косвенно оценить психологические, поведенческие и иные особенности пользователей, и достигается через автоматизацию извлечения указанных данных и разработку инструментария для их анализа. Предметом исследования являются методы автоматизированного извлечения, предобработки, унификации и представления данных из аккаунтов пользователей социальных сетей в контексте их защиты от социоинженерных атак. Предложенный прототип приложения на основе веб-фреймворка Django решает задачу автоматизированного извлечения, предобработки, унификации и представления данных со страниц пользователей социальных сетей, что является одним из важных этапов в построении системы анализа защищенности пользователей от социоинженерных атак, опирающейся, в свою очередь, на синтез профиля пользователей. Теоретическая значимость работы заключается в комбинировании и апробации через автоматизацию разработанных ранее методов и подходов для восстановления пропущенных значений атрибутов аккаунта и сопоставления аккаунтов пользователей социальных сетей на предмет их принадлежности одному пользователю. Практическая значимость состоит в разработке прикладного инструмента, размещенного на поддомене sea.dscs.pro и позволяющего производить первичный анализ аккаунтов пользователей социальных сетей.
Проведение данного исследования обусловлено проблемой отсутствия средств визуализации интенсивности взаимодействия пользователей социальной сети «ВКонтакте», а именно отображения метрик, позволяющих оценивать и ранжировать интенсивность взаимодействия как между пользователем и его друзьями, так и друзей друг с другом. Целью является повышение доступности и оперативности анализа интенсивности взаимодействия между пользователями через автоматизацию визуализации социального графа. При этом предполагается, что числовым коэффициентам дуг социального графа будет сопоставлена оценка интенсивности взаимодействия пользователей на основе данных, извлекаемых из общедоступных источников социальной сети «ВКонтакте». Для достижения поставленной цели были рассмотрены вопросы оптимизации агрегации необходимых данных, программной реализации функций для построения социального графа, наглядного отображения интенсивности взаимодействия пользователей с возможностью выбора интересующих метрик, создания удобного интерфейса и встраивания разработанного инструментария в веб-приложение. Предметом исследования являются данные о взаимодействии между пользователями сети «ВКонтакте» и способы их визуализации. Методы работы основаны на оптимизации отправки запросов к интерфейсу API «ВКонтакте», а также на разработке функций и настроек для построения социального графа. Теоретическая значимость предлагаемого решения заключается в развитии подходов к анализу распространения многоходовых социоинженерных атак и апробированию моделей оценки интенсивности взаимодействия пользователей. Существенная практическая значимость состоит в автоматизации процесса оценки интенсивности взаимодействия сотрудников для принятия эффективных мер по нивелированию рисков успешной реализации социоинженерных атак. Новизна исследования - в улучшении визуализации построения социального графа пользователей «ВКонтакте» через добавление новых метрик для оценки интенсивности взаимодействия пользователей.