ПРОГРАММНЫЕ ПРОДУКТЫ И СИСТЕМЫ
Архив статей журнала
В работе рассматривается методология проектирования интеллектуальных когнитивных систем управления сложными динамическими системами. Кратко описаны информационные и термодинамические подходы, объединяющие однородным условием критерии динамической устойчивости, управляемости и робастности. Обозначены проблемы обучения и адаптации нечеткого регулятора, которые являются актуальными в современной теории управления. Многие существующие решения используют модели искусственных нейронных сетей, основанные на алгоритме обратного распространения ошибки, многослойной структуре Кохонена и т.д. К сожалению, подобные алгоритмы не гарантируют требуемого уровня надежности и точности управления в сложных и непредвиденных ситуациях. Предложено одно из решений проблемы разработки системы когнитивного управления. Оно заключается в поиске конструктивного решения задач проектирования баз знаний и интеллектуального робастного когнитивного управления в заданном проблемно-ориентированном приложении. Сравниваются различные типы регуляторов, в том числе интеллектуальный регулятор на основе эмоционального обучения мозга. Описаны преимущества проектирования робастных баз знаний на основе программно-алгоритмического комплекса Оптимизатор баз знаний (SCOptKBTM) на мягких вычислениях. Рассматривается одна из ключевых задач современной робототехники - разработка технологий когнитивного взаимодействия, позволяющих выполнять интеллектуальные функции управления за счет перераспределения знаний и управления на программном уровне. На практическом примере показана эффективность предложенной гибридной когнитивной системы управления, повышающей точность и надежность распознавания ментальных команд.