Архив статей журнала

АВТОМАТИЗИРОВАННОЕ ДЕТЕКТИРОВАНИЕ И КЛАССИФИКАЦИЯ ОБЪЕКТОВ В ТРАНСПОРТНОМ ПОТОКЕ НА СПУТНИКОВЫХ СНИМКАХ ГОРОДА (2022)
Выпуск: Т. 35 № 2 (2022)
Авторы: Тормозов Владимир Сергеевич

В статье рассматриваются разработанные методы детектирования и классификации объектов в транспортном потоке на данных космической съемки сверхвысокого пространственного разрешения. С появлением в свободном доступе больших объемов спутниковых данных все большую актуальность приобретает развитие методов машинного обучения на основании геопространственных данных, в частности, спутниковых. В настоящей работе обоснован выбор источника данных о транспортных потоках - спутниковых снимков сверхвысокого разрешения, рассмотрены основные проблемы и задачи, связанные с распознаванием и классификацией объектов. Целью автора является разработка цепочки алгоритмов, позволяющей с высокой точностью детектировать и классифицировать объекты в транспортных потоках. Исследования основаны на численной оценке качества работы алгоритмов. В работе используются методы распознавания образов, машинного обучения и обработки цифровых изображений. Научная новизна заключается в уникальном алгоритме извлечения изображений локальных участков улично-дорожной сети, алгоритме определения направления дорожного движения объекта, модернизации алгоритма селективного поиска. Следует подчеркнуть, что используемые данные съемки сверхвысокого разрешения появились в доступе для частного использования относительно недавно.

Сохранить в закладках
МЕТОД АДАПТИВНОЙ КЛАССИФИКАЦИИ ИЗОБРАЖЕНИЙ С ИСПОЛЬЗОВАНИЕМ ОБУЧЕНИЯ С ПОДКРЕПЛЕНИЕМ (2022)
Выпуск: T. 35 № 1 (2022)
Авторы: Елизаров Артем Александрович

В статье представлен метод классификации изображений с использованием, помимо базовой нейронной сети, дополнительной, способной адаптивно концентрироваться на классифицируемом объекте изображения. Задача дополнительной сети является задачей о контекстном многоруком бандите и сводится к предсказанию такой области на исходном изображении, при вырезании которой в процессе классификации возрастет уверенность базовой нейронной сети в принадлежности объекта на изображении правильному классу. Обучение дополнительной сети происходит с помощью методов обучения с подкреплением и стратегий достижения компромисса между эксплуатацией и исследованием при выборе действий для решения задачи о контекстном многоруком бандите. На подмножестве набора данных ImageNet-1K проведены различные эксперименты по выбору архитектуры нейронной сети, алгоритма обучения с подкреплением и стратегии исследования при обучении. Рассмотрены такие алгоритмы обучения с подкреплением, как DQN, REINFORCE и A2C, и такие стратегии исследования, как -жадная, -softmax, -decay-softmax и метод UCB1. Большое внимание уделено описанию проведенных экспериментов и обоснованию полученных результатов. Предложены варианты применения разработанного метода, демонстрирующие увеличение точности классификации изображений по сравнению с базовой моделью ResNet. Дополнительно рассмотрен вопрос о вычислительной сложности данного метода. Дальнейшие исследования могут быть направлены на обучение агента на изображениях, не задействованных при обучении сети ResNet.

Сохранить в закладках
ИНТЕГРАЦИЯ МЕТОДОВ ОБУЧЕНИЯ С ПОДКРЕПЛЕНИЕМ И НЕЧЕТКОЙ ЛОГИКИ ДЛЯ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ РЕАЛЬНОГО ВРЕМЕНИ (2023)
Выпуск: Т. 36 № 4 (2023)
Авторы: Еремеев Александр Павлович, Сергеев М. Д., Петров Виктор Степанович

В данной работе рассмотрены возможности интеграции методов обучения с подкреплением и нечеткой логики в плане повышения эффективности алгоритмов обучения с подкреплением. Главное внимание уделяется применению таких интегрированных методов в интеллектуальных системах реального времени, особенно в системах поддержки принятия решений для мониторинга и управления сложными техническими объектами. Как основа используется метод обучения с подкреплением на базе темпоральных различий, состояние среды и сигнал вознаграждения формируются с применением нечеткой логики. Представлена программная реализация и приводятся данные компьютерного моделирования методов глубокого обучения с подкреплением на основе темпоральных различий, полученные при сравнительном анализе алгоритма на основе нечеткой логики и алгоритмов на основе нейронных сетей. Показано, что основными достоинствами алгоритмов обучения с подкреплением с применением нечеткой логики являются: эффективность обучения, выражающаяся в минимизации количества эпизодов, что особенно важно, когда доступность данных для обучения ограничена или обучение в реальном времени требует быстрой адаптации; устойчивость к шуму и выбросам в данных, что важно в реальных средах, где присутствуют шумы или изменяются данные; интерпретируемость - алгоритмы с нечеткой логикой предоставляют интерпретируемые правила и выводы на основе нечеткой логики; расширение области применения обучения с подкреплением на предметные/проблемные области и задачи с непрерывным пространством состояний. Данные исследования и разработки выполняются в рамках конструирования интеллектуальных систем поддержки принятия решений реального времени. Эти системы предназначены для помощи оперативно-диспетчерскому персоналу (лицам, принимающим решения) при мониторинге и управлении сложными техническими и организационными системами в условиях достаточно жестких временных ограничений и при наличии различного типа неопределенностей (неточности, нечеткости, противоречивости) в поступающей в систему информации, то есть так называемых зашумленных данных.

Сохранить в закладках
НЕЙРОСЕТЕВАЯ ИНСТРУМЕНТАЛЬНАЯ СРЕДА ДЛЯ СОЗДАНИЯ ПЕРСОНАЛИЗИРОВАННЫХ ИНТЕРФЕЙСОВ ПРИКЛАДНЫХ ПРОГРАММ (2023)
Выпуск: T. 36 № 2 (2023)
Авторы: Зубкова Татьяна Михайловна, Тагирова Лилия Фаритовна

Статья посвящена проблеме персонализации интерфейса прикладных программ к индивидуальным особенностям пользователей на основе применения нейросетевых технологий. Новизной предложенного подхода является формирование прототипа интерфейса путем подбора каждого элемента меню отдельно, позволяющего сформировать персонализированный интерфейс. Предлагается использование инструментальной среды, включающей набор компонентов интерфейсной части, из которых динамически генерируется уникальный прототип интерфейса, адаптированный под особенности каждого пользователя. В качестве инструмента для подбора компонентов интерфейса использована глубокая нейронная сеть, представленная в виде многослойного перцептрона. Входными параметрами нейронной сети являются отличительные особенности пользователей, выходными - компоненты будущего прототипа интерфейса. В качестве критериев адаптации интерфейсной части приложений выбраны профессиональные, психофизиологические характеристики пользователей, их демографические особенности, а также эмоциональное состояние. Выходными параметрами являются компоненты интерфейса: размер шрифта текста и гиперссылок, размер и расстояние между элементами веб-страницы, вид подсказок и контекстного меню, сообщения пользователю, цветовая гамма, наличие окна для поиска информации и др. В результате разработана инструментальная среда для создания персонализированных интерфейсов прикладных программ c использованием нейросетевых технологий. В ходе работы программного средства пользователи проходят оценку своих характеристик с помощью базовых тестов IТ-сферы и психологии. Для определения эмоционального тона, возраста и пола в системе используется библиотека Deepface языка Python, которая реализует алгоритм на основе обученной сверточной нейронной сети. Внедрение предложенной инструментальной среды позволит обеспечить удобное взаимодействие между пользователями и программным приложением.

Сохранить в закладках
МОДЕЛИРОВАНИЕ ПОВЕДЕНИЯ ИНТЕЛЛЕКТУАЛЬНЫХ АГЕНТОВ НА ОСНОВЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ В МОДЕЛЯХ КОНКУРЕНЦИИ (2023)
Выпуск: Т. 36 № 1 (2023)
Авторы: Парыгин Данила Сергеевич, Анохин А. О., Садовникова Наталья Петровна, Финогеев Алексей Германович, Гуртяков Александр Сергеевич

В настоящей статье рассматриваются аспекты применения методов машинного обучения к существующим способам моделирования поведения интеллектуальных агентов для обеспечения возможности агентам повысить показатели своей эффективности в моделях конкуренции. Практическая значимость исследования представлена разработкой подхода к моделированию поведения интеллектуальных агентов, за счет которого можно повысить эффективность их функционирования в таких сферах деятельности, как компьютерные игры, разработка беспилотных летательных аппаратов и поисковых роботов, изучение городской и транспортной мобильности, а также в прочих сложных системах. Проведен обзор существующих методов машинного обучения (обучение с подкреплением, глубокое обучение, Q-обучение) и способов моделирования поведения агентов (модель на правилах, конечно-автоматная модель поведения, деревья поведения). Выбрана наиболее подходящая к задаче комбинация метода обучения и модели поведения: деревья поведения и обучение с подкреплением. Средствами Unity реализована тестовая платформа, разработаны модели поведения четырех основных архетипов агентов, которые должны соревноваться в задаче сбора ресурсов в условиях ограниченного времени. Реализован обученный агент с помощью средств Unity ML и TensorFlow. На базе тестовой платформы проведена серия экспериментов в различных условиях: ограниченность, изобилие, среднее количество ресурсов. В рамках эксперимента тестировалась способность разработанной модели поведения интеллектуального агента выигрывать в условиях конкуренции с агентами, снабженными различными вариантами традиционных моделей поведения на базе деревьев поведения. Оценены работоспособность и преимущества использования разработанной модели поведения. Проанализированы результаты эксперимента, сделаны выводы относительно потенциала выбранной комбинации методов.

Сохранить в закладках