ВЕСТНИК ЮЖНО-УРАЛЬСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И ИНФОРМАТИКА
Архив статей журнала
В статье исследован метод определения вектора движения по гиперплоскостям, ограничивающим допустимый многогранник многомерной задачи линейного программирования на основе визуальных образов, подаваемых на вход нейронной сети прямого распространения. Алгоритм визуализации строит в окрестности точки, расположенной на ограничивающей гиперплоскости, рецептивное поле. Для каждой точки рецептивного поля вычисляется скалярное смещение до поверхности гиперплоскости. На основании вычисленного смещения каждой точке рецептивного поля присваивается скалярная величина. Полученный визуальный образ подается на вход нейронной сети прямого распространения, которая вычисляет на ограничивающей гиперплоскости направление максимального увеличения целевой функции. В статье предложена усовершенствованная форма крестообразного рецептивного поля. Описано построение обучающего множества на основе случайно сгенерированных ограничивающих гиперплоскостей и целевых функций в многомерных пространствах. Разработана масштабируемая архитектура нейронной сети с изменяемым числом скрытых слоев. Произведен подбор гиперпараметров нейронной сети. В вычислительных экспериментах подтверждена высокая (более 98%) точность работы крестообразного рецептивного поля. Исследована зависимость точности результатов нейронной сети от числа скрытых слоев и продолжительности обучения.
Оценка производительности добычи полезных ресурсов, в том числе определение геометрических размеров объектов горной породы в открытом карьере, является одной из наиболее важных задач в горнодобывающей промышленности. Задача фрагментации горных пород решается с помощью методов компьютерного зрения, таких как экземплярная сегментация или семантическая сегментация. В настоящее время для решения таких задач для цифровых изображений используются нейронные сети глубокого обучения. Нейронные сети требуют больших вычислительных мощностей для обработки цифровых изображений высокого разрешения и больших наборов данных. Для решения этой проблемы в литературе предлагается использование облегченных архитектур нейронных сетей, а также методов оптимизации производительности, таких как параллельные вычисления с помощью центральных, графических и специализированных процессоров. В обзоре рассматриваются последние достижения в области нейронных сетей глубокого обучения для решения задач компьютерного зрения применительно к фрагментации горных пород и вопросы повышения производительности реализаций нейронных сетей на различных параллельных архитектурах.