ВЕСТНИК ЮЖНО-УРАЛЬСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И ИНФОРМАТИКА
Архив статей журнала
Для стандартной операции конкатенации слов, рассматриваемой как умножение, естественным образом определяется конкатенация языков, а на основе последней операции - степень языка и, при наличии, корень заданной степени. При описании алгоритмов построения языка, являющегося корнем степени M из заданного языка, большое значение имеют так называемые потенциальные корни: это такие слова (не языки), рассматриваемая M-я степень которых входит в заданный язык. Несложно показать, что все потенциальные корни для заданного языка строятся с помощью полиномиального алгоритма. Эта задача, по-видимому, не упрощается при рассмотрении слов и языков над 1-буквенным алфавитом - что и делается в настоящей статье. Табуированная пара потенциальных корней - это такая пара, конкатенация слов которой в язык не входит. В предыдущих публикациях на тему описания алгоритмов извлечения корней из языка возникала гипотеза, что полиномиальный алгоритм извлечения корня из языка может быть описан на основе рассмотрения только множества табуированных пар - путем перебора специально описываемых подмножеств множества потенциальных корней. В настоящей статье показывается, что подобный алгоритм (называемый «простым») невозможен, т.е. если и существует полиномиальный алгоритм извлечения корня из языка, то он (алгоритм) должен использовать некоторую дополнительную информацию.
Статья посвящена исследованию полурешеток, содержащих покрывающие автоматы для автомата Ватерлоо. В начальных разделах статьи описывается процесс построения покрывающих автоматов на основе подмножеств гридов исходного автомата (каждый грид представляет собой некоторое множество дуг, связанных с исходным автоматом), а также рассматриваются свойства полурешеток, образуемых покрывающими автоматами. Основным результатом статьи является полное описание полученных полурешеток с точки зрения эквивалентности входящих в них покрывающих автоматов исходному автомату Ватерлоо. Выделены три класса полурешеток, каждый из которых имеет особые свойства. Для полурешетки, построенной на базе минимального покрывающего автомата, получено графическое представление, которое позволяет наглядно отразить соотношения между ее наборами, состоящими из попарно эквивалентных автоматов. Кроме того, сформулирован критерий эквивалентности покрывающего автомата автомату Ватерлоо в терминах свойств подмножества гридов, определяющего покрывающий автомат. Исследование проводилось с применением библиотеки NFALib для анализа недетерминированных конечных автоматов, реализованной автором на языке C#. Актуальность изучения автомата Ватерлоо связана с его ролью в исследовании задачи вершинной минимизации недетерминированных конечных автоматов и разработке эвристических алгоритмов реального времени, используемых для ее решения.
Основной предмет статьи - рассмотрение задач, возникающих при исследовании необходимых условий равенства бесконечных итераций конечных языков. В предыдущих публикациях автором рассматривались примеры применения соответствующего этому равенству специального бинарного отношения эквивалентности на множестве конечных языков, причем рассматривались как примеры, описывающие необходимые условия его выполнения, так и примеры его использования. К одному из таких необходимых условий применены два варианта сведeния рассматриваемой задачи: к конечным автоматам и к бесконечным итерационным деревьям. Также в статье приведены несколько вариантов важной гипотезы, формулируемой для множества конечных языков; ее исследование дает и иные варианты сведeния рассматриваемой задачи к специальным задачам для недетерминированных конечных автоматов. При этом в случае выполнения сформулированной гипотезы некоторые из таких задач решаются за полиномиальное время, а некоторые не решаются; при продолжении работ по данной тематике последний факт может дать возможность переформулировки проблемы P = NP в виде специальной задачи теории формальных языков.