ВЕСТНИК ЮЖНО-УРАЛЬСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И ИНФОРМАТИКА
Архив статей журнала
В статье предлагается новый метод распознавания строений на спутниковых снимках. Представленный метод является гибридным, он основан на алгоритме исключения областей и методе жука. Алгоритм исключения областей представляет собой хорошо известный и эффективный способ сегментации изображения на регионы схожих пикселей по различным признакам: цвет, текстура, яркость, форма и т.д. Метод жука - классический метод контурного анализа, выполняющий последовательное вычерчивание границы между объектом и фоном. В рамках работы предлагаемого алгоритма сначала метод исключения областей выделяет потенциальные области, в которых могут находиться строения и устраняет нежелательные элементы на изображении (растительность, водные поверхности и дороги), которые могут быть ложно распознаны как строения. Далее модифицированный метод жука определяет местоположение и контуры строений. На финальном этапе среди обнаруженных объектов выявляются искусственно созданные объекты, у которых имеется объем. Для реализации проверки объектов на искусственное происхождение и объемность разработаны собственные методы. Представленный алгоритм распознавания показывает хорошую точность распознавания и не требует обучающей выборки. В статье описывается программная реализация предлагаемого метода. Демонстрируются результаты вычислительных экспериментов по оцениванию эффективности метода и сравнению с тремя известными алгоритмами распознавания.
В настоящее время в широком спектре предметных областей актуальной является задача восстановления пропущенных точек или блоков значений временных рядов. В статье представлен метод SAETI (Snippet-based Autoencoder for Time-series Imputation) для восстановления пропусков в многомерных временных рядах, который основан на совместном применении нейросетевых моделей-автоэнкодеров и аналитического поиска во временном ряде поведенческих шаблонов (сниппетов). Восстановление многомерной подпоследовательности, содержащей пропуски, выполняется посредством двух следующих нейросетевых моделей. Распознаватель получает на вход подпоследовательность, в которой пропуски предварительно заменены на нули, и для каждого измерения определяет соответствующий сниппет. Реконструктор принимает на вход подпоследовательность и набор сниппетов, полученных Распознавателем, и заменяет пропуски на правдоподобные синтетические значения. Реконструктор реализован как совокупность двух следующих моделей: Энкодер, формирующий скрытое состояние для совокупности входной подпоследовательности и распознанных сниппетов; Декодер, получающий на вход скрытое состояние, который восстанавливает исходную подпоследовательность. Представлено детальное описание архитектур вышеперечисленных моделей. Результаты экспериментов над реальными временными рядами из различных предметных областей показывают, что SAETI в среднем опережает передовые аналоги по точности восстановления и показывает лучшие результаты в случае, когда восстанавливаются данные, отражающие активность некоего субъекта.