Архив статей журнала

ОСНОВАННЫЙ НА ГЕНЕТИЧЕСКОМ ПОДХОДЕ АЛГОРИТМ ВНУТРИКОДИРОВАНИЯ ДЛЯ H.266/VVC (2024)
Выпуск: Т. 23 № 3 (2024)
Авторы: Мурудж Ибрагим Халид, Хатиф Наджи Аль-Аззави, Абдаламир Аль-Хафаджи Исраа

Представлен генетический подход для оптимизации внутреннего кодирования в H.266/VVC. Предлагаемый алгоритм эффективно выбирает инструменты кодирования и многотипные древовидные разбиения (MTT) для достижения баланса между временем кодирования и качеством видео. Функция оценки пригодности, которая объединяет показатели восприятия и эффективности кодирования, используется для оценки качества каждого возможного решения. Результаты демонстрируют значительное сокращение времени кодирования без ущерба для качества видео. Предлагаемый алгоритм выбирает инструменты кодирования из набора доступных инструментов в H.266/VVC. Эти инструменты включают режимы внутреннего прогнозирования, единицы преобразования, параметры квантования и режимы энтропийного кодирования. Схема разбиения MTT включает четыре типа разбиений: квадродерево, двоичное дерево, троичное дерево и квадро-двоичное дерево. Показатели восприятия используются для оценки визуального качества закодированного видео. Показатели эффективности кодирования используются для оценки эффективности кодирования закодированного видео. Функция оценки пригодности объединяет показатели восприятия и показатели эффективности кодирования для оценки качества каждого возможного решения.

Сохранить в закладках
РАСПОЗНАВАНИЕ ДЕЙСТВИЙ ЧЕЛОВЕКА В СИСТЕМАХ ВИДЕОНАБЛЮДЕНИЯ С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ ГЛУБОКОГО ОБУЧЕНИЯ - ОБЗОР (2024)
Выпуск: Т. 23 № 2 (2024)
Авторы: Суджата Гупта Нукал, Рамья К. Рут, Карнати Рамеш

Несмотря на широкое применение во многих областях, точная и эффективная идентификация деятельности человека продолжает оставаться интересной исследовательской проблемой в области компьютерного зрения. В настоящее время проводится много исследований по таким темам, как распознавание активности пешеходов и способы распознавания движений людей с использованием данных глубины, трехмерных скелетных данных, данных неподвижных изображений или стратегий, использующих пространственно-временные точки интереса. Это исследование направлено на изучение и оценку подходов DL для обнаружения человеческой активности на видео. Основное внимание было уделено нескольким структурам для обнаружения действий человека, которые используют DL в качестве своей основной стратегии. В зависимости от приложения, включая идентификацию лиц, идентификацию эмоций, идентификацию действий и идентификацию аномалий, прогнозы появления людей разделены на четыре различные подкатегории. В литературе было проведено несколько исследований, основанных на этих распознаваниях для прогнозирования поведения и активности человека в приложениях видеонаблюдения. Сравнивается современное состояние методов DL для четырех различных приложений. В этой статье также представлены области применения, научные проблемы и потенциальные цели в области распознавания человеческого поведения и активности на основе DL.

Сохранить в закладках
ИНТЕЛЛЕКТУАЛЬНАЯ СХЕМА РАСПРЕДЕЛЕНИЯ ЗАДАЧ С УЧЕТОМ ЗАДЕРЖЕК ВЫЧИСЛЕНИЙ В EDGE-FOG-CLOUD - ОБЗОР (2024)
Выпуск: Т. 23 № 1 (2024)
Авторы: Свапна Б, Дивья В

Огромный объем данных, создаваемых процедурами Интернета вещей, требует вычислительной мощности и места для хранения, предоставляемого облачными, периферийными и туманными вычислительными системами. Каждый из этих способов вычислений имеет как преимущества, так и недостатки. Облачные вычисления улучшают хранение информации и вычислительные возможности, одновременно увеличивая задержку соединения. Периферийные и туманные вычисления предлагают аналогичные преимущества с уменьшенной задержкой, но имеют ограниченное хранилище, емкость и покрытие. Первоначально оптимизация применялась для решения проблемы сброса трафика. И наоборот, традиционная оптимизация не может удовлетворить жесткие требования к задержке принятия решений в сложных системах, варьирующейся от миллисекунд до долей секунды. В результате алгоритмы машинного обучения, особенно обучение с подкреплением, набирают популярность, поскольку они могут быстро решать проблемы разгрузки в динамических ситуациях, включающих определенные неопознанные данные. Мы проводим анализ литературы, чтобы изучить различные методы, используемые для решения этой интеллектуальной задачи по разгрузке задач с учетом задержек для облачных, периферийных и туманных вычислений. Уроки, полученные в результате этих исследований, затем представлены в настоящем отчете. Наконец, мы определяем некоторые дополнительные возможности для изучения и проблемы, которые необходимо преодолеть, чтобы достичь минимальной задержки в системе разгрузки задач.

Сохранить в закладках
СИСТЕМА АНАЛИЗА ТОНАЛЬНОСТИ ТЕКСТА НА ТЕЛУГУ НА ОСНОВЕ НОВОГО ПАССИВНО-АГРЕССИВНОГО КЛАССИФИКАТОРА С НЕЧЕТКИМ ВЗВЕШИВАНИЕМ (2024)
Выпуск: Т. 23 № 1 (2024)
Авторы: Найду Дж Джанардана, Сешашаяи M

Обработка естественного языка (NLP) - это разновидность искусственного интеллекта, демонстрирующая, как алгоритмы могут взаимодействовать с людьми на их уникальных языках. Кроме того, анализ настроений в NLP лучше проводится во многих программах, включая оценку настроений на телугу. Для обнаружения текста на телугу используются несколько неконтролируемых алгоритмов машинного обучения, таких как кластеризация k-средних с поиском с кукушкой. Однако эти методы с трудом справляются с кластеризацией данных с переменными размерами и плотностью кластеров, низкой скоростью поиска и плохой точностью сходимости. В ходе этого исследования была разработана уникальная система анализа настроений на основе машинного обучения для текста на телугу, позволяющая устранить указанные недостатки. Первоначально, на этапе предварительной обработки, предлагаемый алгоритм линейного преследования (LPA) удаляет слова в пробелах, знаках препинания и остановках. Затем для маркировки POS в этом исследовании было предложено условное случайное поле с лексическим взвешиванием; После этого предлагается надуманный пассивно-агрессивный классификатор с нечетким взвешиванием (CPSC-FWC) для классификации настроений в тексте на телугу. Следовательно, предлагаемый нами метод дает эффективные результаты с точки зрения точности, воспроизводимости и показателя f1.

Сохранить в закладках