ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ
Архив статей журнала
Работа связана с изучением нелинейных параболических систем, возникающих при моделировании и управлении нестационарными процессами фильтрации в подземной гидродинамике. Одна из постановок является системой, которая включает в себя краевую задачу второго рода для квазилинейного параболического уравнения с неизвестной функцией источника в правой части, а также уравнение изменения по времени этой функции. В другой постановке рассматривается проблема управления этой системой с управляющим воздействием граничного режима. Данные постановки существенно отличаются от обычных краевых задач и задач управления для параболических уравнений, в которых предполагается, что все входные данные должны быть заданы. Полученные в работе результаты представляют не только теоретический интерес, они имеют практическое значение для исследования различных фильтрационных процессов. Приведены некоторые примеры таких приложений, связанных с движением жидкости в трещиновато-пористых средах.
Рассматриваются математические модели, связанные с изучением нестационарных процессов фильтрации в подземной гидродинамике. Они представляют собой нелинейные задачи для параболических уравнений с неизвестной функцией источника в правой части. Одна из постановок является системой, которая состоит из краевой задачи с граничными условиями первого рода и из уравнения, задающего закон изменения по времени искомой функции источника. В другой постановке соответствующая система включает в себя краевую задачу с граничными условиями второго рода. Указанные постановки существенно отличаются от обычных краевых задач для параболических уравнений. Цель исследования - установить для этих нелинейных параболических задач условия однозначной разрешимости в классе гладких функций на основе априорных оценок метода Ротэ.