СТРОИТЕЛЬНАЯ МЕХАНИКА ИНЖЕНЕРНЫХ КОНСТРУКЦИЙ И СООРУЖЕНИЙ
Архив статей журнала
Сформулирована динамическая задача с отрицательным течением времени. Обычные уравнения движения с добавлением начальных условий достаточны не только для того, чтобы рассматривать движение деформируемой системы при обычном, прямом течении времени, но позволяют восстанавливать состояние системы для предыдущих моментов времени. Практическое приложение решения задач с отрицательным временем авторы видят, прежде всего, в контроле численных методов инте- грирования уравнений движения, поскольку прямой и обратный ход не являются идентичными. Предлагаемый способ тестирования численных методов решения динамических задач в принципе может быть применен к любой вычислительной схеме интегрирования уравнений движения. Дано два примера с численным решением на основании явной вычислительной схемы с экстраполяцией по Адамсу. Решаемые задачи относятся к плоско-деформированному состоянию пластин в условиях больших перемещений. Области пластин разбиваются на треугольные конечные элементы с равномерным шагом для пространственной сетки. Криволинейные границы в этом случае получаются ступенчатыми. Результаты приведенных тестовых примеров продемонстрировали хорошую точность тестируемого метода. Были рассмотрены задачи, требующие большого количества шагов интегрирования (до 1 миллиона), при этом система возвращалась в исходное состояние с большой точностью. Второе из приведенных численных решений имело расчетную схему из 160 000 конечных элементов, динамическое решение задачи носит явно выраженный волновой характер решения. В примерах приведены данные о восстановлении значений упругих перемещений, скоростей и напряжений. Основной вывод, который можно сделать из работы, заключается в том, что предлагаемый вариант контроля численных методов может быть эффективно использован, особенно для задач, решение которых носит волновой характер.
Дифференциальные уравнения равновесия безмоментной теории оболочек легче всего интегрируются для цилиндрических и прямых конических круговых оболочек. Труднее задача решается для оболочек нулевой гауссовой кривизны, заданных не в линиях кривизны. Это еще раз подтверждено на примере конической эллиптической оболочки. Впервые получены аналитические формулы для определения нормальных и касательных внутренних усилий в прямой конической эллиптической оболочке по безмоментной теории оболочек, заданных в неортогональной сопряженной системе криволинейных координат. Полученные результаты могут быть использованы для приближенной оценки напряженного состояния тонких конических оболочек на эллиптическом основании, а также при исследовании устойчивости этих оболочек. Четыре внутренних тангенциальных усилия, полученные интегрированием системы четырех уравнений равновесия элемента оболочки, содержат две неизвестные функции интегрирования, которые находятся при выполнении поставленных граничных условий. Использование полученных аналитических формул проиллюстрировано на примере расчета усеченной конической эллиптической оболочки со свободным верхним краем. Внешняя нагрузка — поверхностная равномерно распределенная нагрузка в направлении вертикальной оси оболочки. Приведенные формулы легко адаптируются для случая расчета прямой круговой конической оболочки.
Большое количество зданий за свой эксплуатационный период приобретают повреждения различного происхождения: техногенного, природного, эксплуатационного и др. Для детальной оценки технического состояния зданий и сооружения в соответствии с нормативными документами проводят динамические испытания для общего анализа состояния поврежденности здания. Во многих работах отечественных и зарубежных авторов приведены результаты сопоставления натурных испытаний и численных расчетов методом конечных элементов. При анализе результатов можно сделать выводы, что динамический метод является достоверным, однако имеет ряд ограничений. Преимуществом динамического метода оценки повреждений зданий является возможность корректировки конечно-элементных моделей в программных комплексах с учетом полученных результатов по натурным испытаниям, что позволяет получить более точные результаты для оценки несущей способности в условиях сейсмических воздействиях. Для уточнения сведений о влиянии повреждений зданий на их сейсмостойкость был поставлен эксперимент на коррозионно-поврежденных железобетонных колоннах. Результатом первого этапа эксперимента является оценка изменения динамических характеристик (собственная частота, декремент колебаний, коэффициент затухания колебаний и др.) железобетонных образцов колонн, подверженных коррозионным повреждениям.