В данной работе предложен новый метод улучшения качества зашумленных речевых сигналов. В его основе лежит двухэтапная схема, с первым этапом широкополосной обработки аудиосигнала и вторым этапом обработки отдельных частотных полос. Преобразование сигнала осуществлялось над оконным Фурье-разложением обрабатываемого сигнала. На каждом этапе задействованы слои, моделирующие структурированное пространство состояний (S4), хорошо зарекомендовавшие себя при обработке и предсказании длинных временных рядов. За счет их применения уменьшилось число обучаемых параметров нейронной сети без потери качества работы. Длительность процесса обучения в расчете на одну эпоху уменьшилась по сравнению с рекуррентными сетями из-за применения сверточной формы S4-преобразований. Проведена апробация предложенного метода. Нейронная сеть с S4-преобразованиями реализована на языке Python с применением библиотеки глубокого обучения PyTorch. Обучение сети проведено на наборе данных DNS Challenge 2020. Для тестирования работы на основе того же набора данных сгенерирован набор тестовых примеров, включающих в себя различные классы шумовых добавок. Продемонстрировано превосходство предложенного метода в целом по сравнению с аналогичными решениями, основанными на применении слоев рекуррентных преобразований. Проведен анализ того, какие классы шумов более эффективно очищаются из обрабатываемого сигнала.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.