Архив статей

Применение алгоритмов машинного обучения для прогнозирования золоторудной минерализации Верхнеамгинского щелочного массива, Алдано-Становой щит (2025)
Выпуск: № 2, Том 30 (2025)
Авторы: ЧУДИНОВ Павел Леонидович, ФРИДОВСКИЙ Валерий Юрьевич

Приводятся результаты применения методов машинного обучения для прогнозирования золоторудной минерализации на поисковой стадии геологоразведочных работ на примере Верхнеамгинского щелочного массива Алдано-Станового щита. Использованы данные анализа 403 штуфных проб методом ICP-AES на 25 химических элементов. Протестированы восемь алгоритмов классификации: Random Forest, Support Vector Machine, Neural Network (Multilayer Perceptron), Boosting (AdaBoost), Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis и Naive Bayes. Наивысшую точность (до 89,6 %) продемонстрировали Random Forest и Support Vector Machine, основанные на выявлении взаимосвязей между рудными элементами (Au, Ag, As, Cu, Sb) и элементами с отрицательной корреляцией (Mg, Ca, Ti). Результаты подтверждены ROC-анализом. При создании модели машинного обучения в качестве целевой переменной приняты значения «рудного» фактора для каждой пробы, использованные в качестве предиктора. С помощью построения аномальных полей значений «рудного» фактора проведено сравнение параметров известных объектов и прогнозируемых площадей. Методы машинного обучения позволяют оперативно и надежно интерпретировать аналитические данные, полученные с использованием спектрометрии или портативных XRF-анализаторов. Для повышения точности прогноза подчеркивается важность комбинации традиционных статистических методов (кластерный, факторный анализ) с современными алгоритмами машинного обучения.

Сохранить в закладках