Архив статей

ИСПОЛЬЗОВАНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ДИАГНОСТИКЕ АНЕВРИЗМ АОРТЫ (2025)
Выпуск: № 4, Том 5 (2025)
Авторы: Шахмилов Алимерза Арсланбегович, Ванюркин Алмаз Гафурович, Пантелеева Юлия Константиновна, Верховская Екатерина Вадимовна

Цель. Цель данного исследования — изучить использование методов глубокого нейросетевого обучения в диагностике и лечении аневризмы аорты (АА), основываясь на методах визуализации. Будет уделено особое внимание скринингу, диагностике, сегментации поражений, хирургической помощи и прогнозированию исходов. Методы. Был проведен обзор научных публикаций, в которых использовались модели глубокого обучения, такие как сверточные нейронные сети (СНС), в различных аспектах диагностики и лечения АА. Результаты. Модели глубокого обучения продемонстрировали значительный прогресс в лечении и диагностике аневризм аорты. Отмечается, что такие модели, как ResNet, обеспечивают высокую точность выявления аневризмы на бесконтрастных компьютерных томограммах. Такие методы, как U-Net, позволяют точно измерить размер и объем аневризмы, что важно для планирования объема хирургического вмешательства. Глубокое обучение также помогает в хирургических процедурах, точно предсказывая позицию стента и послеоперационные осложнения. Кроме того, модели способны с высокой точностью прогнозировать прогрессирование аневризмы и оценивать вероятность неблагоприятного исхода для пациента. Выводы. Технологии глубокого обучения демонстрируют значительный потенциал в улучшении диагностики, лечения и контроля аневризмы аорты. Эти достижения могут привести к более точному и персонализированному подходу к пациентам, улучшая результаты лечения лиц с данной патологией.

Сохранить в закладках