Проведены экспериментальные исследования температурных характеристик нового типа плазменной струи — апокампа в воздухе атмосферного давления. Для этого предложена и апробирована методика построения «температурных карт», и с её помощью показано, что плазма в апокампе имеет большой температурный градиент с температурой в конце струи около 100 оС при температуре канала разряда около 1300 оС.
В однобарьерном разряде с обострением напряжения и низкими расходом газа (до 1 л/мин) в щелевой геометрии разрядной зоны сформированы плоские плазменные струи атмосферного давления в воздухе, имеющие ширину до 3 см и длину до 4 см. Измерены энергетические, температурные и спектральные характеристики полученных струй. Спектр излучения содержит интенсивные максимумы, соответствующие электронно-колебательным переходам второй положительной системы молекулярного азота N2 (C3Πu → B3Πg) и сравнительно слабые линии переходов первой положительной системы иона N2 + (B2Σ+ u → X2Σ g). На примере инактивации культуры Staphylococcus aureus (штамм АТСС 209) показано, что плазма является источником химически активных частиц, обеспечивающих инактивацию микроорганизмов.
Экспериментально исследовано влияние полярности напряжения на высоковольтном электроде диэлектрического барьерного разряда (ДБР) на синтез озона в воздухе при атмосферном давлении в двух различных конфигурациях ДБР: с вращающимся со скоростью 3000 об/мин диэлектрическим диском и с классической схемой с плоскими электродами. В ДБР с движущимся диэлектриком на электроды подавалось постоянное напряжение, а в случае классической ячейки ДБР – переменное напряжение с частотой 50 Гц. В случае ДБР с вращающимся диэлектрическим диском при отрицательной полярности высоковольтного электрода концентрация озона в выходном воздушном потоке в 3,5–4 раза выше, чем при положительной полярности. В случае классической ячейки ДБР влияние полярности переменного напряжения существенно ниже, концентрации синтезированного озона при разных полярностях высоковольтного электрода отличаются в 1,4–1,5 раза.
Методами цифровой трассерной визуализации (PIV) и скоростной фотосъёмки исследован разряд с жидким электролитным катодом при атмосферном давлении в воздухе. Определено поле скоростей газовых потоков, создаваемых разрядом. Показано, что газовый поток, создаваемый разрядом, движется вниз вдоль разрядного канала к поверхности раствора, достигая максимальной скорости вблизи его поверхности. Встречаясь с поверхностью раствора газ начинает растекаться вдоль неё в тонком слое толщиной около двух миллиметров. Таким образом, установлено, что компоненты раствора, перенесённые из раствора в газовую фазу под действием разряда с жидким катодом, выносятся из зоны разряда в горизонтальном направлении, вдоль поверхности раствора.
Выполнен анализ перспективности применения УФ-излучения 222 нм эксимерных KrCl-ламп для обеззараживания воздуха и поверхностей. Предполагаемые основные преимущества излучения 222 нм, заключающиеся в возможности проводить обеззараживание в присутствии людей, и более высокая бактерицидная эффективность по сравнению с длиной волны 254 нм ртутных и амальгамных ламп низкого давления, проходят экспериментальную проверку. Исследования показывают противоречивые результаты о безопасности такого излучения для кожи и для глаз млекопитающих. Инактивация вирусов и простых бактериологических штаммов УФ-излучением 222 нм и 254 нм достигается при аналогичных УФ-дозах, однако для более крупных объектов (эндоспоры, грибы, гифы грибов) существенное преимущество имеет УФ-излучение 254 нм. Эффективность генерации УФ-излучения 222 нм в промышленных KrCl-лампах составляет 3–5 %, что существенно меньше, чем для ртутных и амаль-гамных ламп низкого давления 30–35 %.
Представлен критический анализ технологий обеззараживания воздуха на примерах оборудования производителей в России.
Предложен механизм образования озона при фотолизе влажного воздуха ультрафиолетовым излучением ртутной лампы низкого давления. Кинетическая схема фотолиза содержит 4 фотохимические реакции, инициируемые квантами излучения на длине волны 184,95 нм, 4 фотохимические реакции, инициируемые квантами излучения на длине волны 253,65 нм, и 35 обратимых элементарных стадий с участием 12 частиц (атомов, радикалов и молекул). Численное моделирование с использованием предложенного механизма показало хорошее согласие с экспериментальными результатами.
В воздухе, азоте, аргоне и гелии атмосферного давления исследовано излучение плазмы диффузного разряда, формируемой между двумя электродами с малым радиусом кривизны. При наносекундной длительности импульса напряжения и милиджоульных энерговкладах в газ зарегистрированы треки частиц, вылетающих из ярких пятен на электродах, в том числе, под прямым углом к их поверхности. Показано, что в этих условиях длина треков зависит от полярности электрода и, что в воздухе треки заканчиваются более яркой областью свечения. Установлено, что наибольшую интенсивность излучения при разрядах в четырёх различных газах (воздух, азот, аргон и гелий) имеют треки, которые формируются в воздухе. Из этого, а также из зарегистрированной ранее длительности свечения треков в сотни микросекунд, следует, что их излучение в основном определяется нагревом материала электрода в результате взаимодействия с кислородом.
Измерена напряжённость электрического поля в канале разряда с жидким электролитным катодом при атмосферном давлении в воздухе в диапазоне токов 20–90 мА. Найдены зависимости напряжённости поля от величины разрядного тока для водных растворов с разным составом и с разными значениями рН, но с одной и той же удельной электропроводностью 300 мкСм/см. Показано, что эти зависимости мало отли-чаются друг от друга. Получена усреднённая по составу раствора зависимость напряжённости поля в разряде с жидким катодом от тока разряда.
Анализ технологий УФ-обеззараживания воздуха и помещений показал, что происходит переход к УФ-облучателям с высокой средней мощностью (1–2 кВт). Эффективность обеззараживания импульсным ксеноновым источником полностью определяется классическим механизмом обеззараживания и полученной УФ-дозой. В качестве базового значения рекомендуется принять дозу 25 мДж/см2.
Измерена интенсивность свечения второй положительной системы азота вблизи поверхности раствора в разряде с жидким электролитным катодом при атмосферном давлении в воздухе для водных растворов разного состава. Показано, что интенсивность свечения для всех исследованных растворов сильно падает с ростом разрядного тока от 20 до 100 мА. Показано, что для этих растворов при всех разрядных токах вращательная и колебательная температуры, определённые по молекулярному азоту, идентичны и равны соответственно 2400 и 3800 К. Обсуждаются возможные причины различия в интенсивности свечения второй положительной системы азота при одинаковых температурах.