Проведена экспериментальная оценка количества заряда, выносимого из коаксиально-го плазменного реактора с микрополым катодом в зависимости от напряжения питания и скорости прокачки газа через активную зону реактора. Показано, что количество заряда, выносимого из реактора, определяется не только прокачкой газоразрядного промежутка и расстояния до мишени, но и от режима горения разряда. Сравнительный анализ режимов питания реактора выявил значительную разницу в эффективности генерации и транспорта заряда: при использовании источника постоянного высокого напряжения выносимый заряд превышает аналогичный показатель в импульсном режиме в 5 раз. Данное различие обусловлено как повышенной частотой зажигания разряда, так и увеличенной длительностью ионизационных процессов в непрерывном режиме. В то же время установлено, что комбинация регулируемого импульсного высоковольтного питания и управляемой скорости газового потока позволяет гибко контролировать динамику выноса заряда, обеспечивая возможность дозированного и локализованного плазменного воздействия.
Методами цифровой трассерной визуализации (PIV) и скоростной фотосъёмки исследован разряд с жидким электролитным катодом при атмосферном давлении в воздухе. Определено поле скоростей газовых потоков, создаваемых разрядом. Показано, что газовый поток, создаваемый разрядом, движется вниз вдоль разрядного канала к поверхности раствора, достигая максимальной скорости вблизи его поверхности. Встречаясь с поверхностью раствора газ начинает растекаться вдоль неё в тонком слое толщиной около двух миллиметров. Таким образом, установлено, что компоненты раствора, перенесённые из раствора в газовую фазу под действием разряда с жидким катодом, выносятся из зоны разряда в горизонтальном направлении, вдоль поверхности раствора.
Исследовано формирование диффузной плазмы в трубках с внутренними диаметрами 8,4 и 14,2 см при скорости роста напряжения V 35 кВ/мкс и 100 В/мс. Приводятся фотографии свечения разряда в различных режимах. Показано, что при V 100 В/мс и давлениях воздуха p = 0,4 и 1 Торр пробой промежутка инициируется за счёт распро-странения стримера от плоского электрода положительной полярности. Установлено, что после прохождения стримером промежутка плоскость – остриё и образования плазменной диффузной струи красного цвета, происходит формирование тлеющего разряда, который может поддерживаться как в импульсном, так и в стационарном режиме. Показано, что наибольшую мощность излучения из плазмы разряда в этих условиях даёт фронт стримера, а наибольшие энергии излучения первой и вто-рой положительных систем азота достигаются за счёт увеличения длительности импульса возбуждения при переходе в режим тлеющего разряда. Подтверждено, что при p = 0,4 и 1 Торр спектр излучения положительного столба тлеющего разряда соответствует спектру излучения красных столбчатых спрайтов.
Проведены исследования влияния плазмы коронного разряда на окислительно-восстановительные реакции почвы, а именно на образцы низинного торфа (капилляр-но насыщенного водой) и чистого кварцевого песка (воздушно сухого) в чистом виде и в смесях при разном соотношении торфа и песка. Параметры разряда: время действия до 60 мин, напряжение на разряде U = 10–20 кВ, ток в разряде I = 20–100 мкА. Максимальный эффект обработки коронным разрядом образцов был получен в отношении окислительно-восстановительного потенциала. Процесс окисления органического вещества идет под влиянием озона и отрицательных ионов, образующихся в плазме коронного разряда. Эффективность воздействия отрицательной короны в 2–5 раз выше, чем положительной, что связано с более эффективной наработкой отрицательных ионов.
Выполнены расчеты значений собственной концентрации свободных носителей заря-да, ni, в антимониде индия при Т = 295 К и Т = 77 К с учетом непараболичности зоны проводимости. Показано, что = (2,14 0,01)1016 см-3, а = (2,47 0,01)109 см-3. Проведено сравнение значений произведения npТ и квадрата собственной концентрации,, и показано, что они отличаются между собой. Высказано предположение, что эти различия обусловлены непараболичностью зоны проводимости. Анализируются литературные данные (результаты экспериментов по определению значений ni в широком интервале температур). Показано, что результаты расчетов удо-влетворительно согласуются с экспериментальными данными. Предполагается, что полученные результаты будут в дальнейшем использоваться для оптимизации технологических процессов выращивания и легирования монокристаллов антимонида индия.
В работе посредством численного моделирования исследован процесс параметрического распада лазерной волны необыкновенной поляризации в плазме в сверхсильном магнитном поле. В таком взаимодействии волна накачки распадается на два верхнегибридных плазмона с последующим каскадным возбуждением мод Бернштейна. Обнаружено возникновение отраженной от области неоднородности плазмы необыкновенной волны на верхнегибридной частоте. Сделан вывод о том, что отраженная волна возбуждается верхнегибридными плазмонами, возникшими при первичном распаде. Исследована зависимость средней энергии электронов, набираемой при развитии неустойчивости, от величины внешнего магнитного поля и от градиента плотности плазмы
В работе обсуждается эффект частичного «запирания» рентгеновских квантов с энергией меньше или порядка 10 кэВ межэлектродной полидисперсной средой наносекундного вакуумного разряда (НВР) с виртуальным катодом, что иногда сопровождается высокоинтенсивными вспышками рентгеновского излучения (РИ). Предложена модель диффузии и выпуска РИ в НВР на основе решения уравнения для потока квантов в рассеивающей и поглощающей межэлектродной среде. Результаты представленной модели сопоставляются со схемой стохастического лазера В. С. Летохова.
Цель работы – показать возможность возбуждения индуцированной (собственной) намагниченности в антиферромагнитной (АФМ) нанопленке магнитного перехода (МП), а также рассмотреть вопрос его практического применения при создании спининжекционных источников ТГц сигнала. Приведено физическое обоснование рассматриваемого процесса за счет скашивания подрешеток АФМ под действием спинполяризованного тока, инжектируемого из ферромагнитного (ФМ) слоя вследствие sd-обменного взаимодействия спинов электронов проводимости сd-электронами кристаллической решетки. Приведены соотношения для определения частоты и мощности излучаемого сигнала. На примере работы ТГц спин-инжекционного излучателя, использующего «метапереход» с МП ФМ-АФМ, показана практическая значимость рассматриваемого эффекта. Экспериментально показана нетепловая природа излучения в МП ФМ-АФМ на частотах 16 ТГц с уровнем мощности сотни мкВт, а также влияние на процессы в метапереходе внешнего магнитного поля
Представлены результаты теоретических и экспериментальных исследований воздействия -нейтронного излучения на параметры светоизлучающих структур с массивом наноостровков Ge(Si), выращенных методом молекулярно-лучевой эпитаксии на подложках «кремний на изоляторе». Данные структуры показали высокий уровень стойкости к воздействию -нейтронного излучения, сравнимый с уровнем стойкости структур с наноостровками Ge(Si) на подложках Si(001). Снижение интенсивности люминесценции данных структур совпадает с теоретической оценкой степени влияния радиационных дефектов. Результаты моделирования, а также экспериментальные данные показывают, что на радиационную стойкость светодиодов в наибольшей степени влияет структура массива наноостровков Ge(Si), обусловленная технологией их изготовления.
С целью получения и сравнения основных фотоэлектрических характеристик МФПУ в пределах одной крупноформатной матрицы, разработаны топологии тестовых матричных структур на основе InSb с квадратной и круглой формами фоточувствительной области, шагом элементов 10, 12, 15 и 20 мкм, предназначенных для гибридизации с БИС считывания формата 12801024 и шагом 12 мкм. Представлена структура комплекта фотошаблонов с матричными тестовыми элементами для реализации клиновидного утоньшения с целью получения сверхтонких структур с контролируемой толщиной для повышения прочности и минимизации взаимосвязи. Проанализированы возможности реализации предложенных тестовых структур.
Проведены исследования структур в конфигурациях n-B(SL)-n и MI-n-B(SL)-n, сформированных на основе эпитаксиальных пленок, выращенных методом молекулярно-лучевой эпитаксии (МЛЭ) из HgCdTe со сверхрешеткой в барьерной области. Состав в поглощающем слое структур рассчитан на работу в диапазоне LWIR и составлял величину 0,22. Было изготовлено и исследовано два образца с разной архитектурой сверхрешетки. Исследование темновых токов n-B(SL)-n структур показало, что для обоих типов образцов наблюдается аномальная зависимость плотности тока от температуры с минимумом плотности тока при температурах 100–120 К. Выявлено доминирование компонент тока поверхностной утечки для обеих структур. На основании исследования адмиттанса структур MI-n-B(SL)-n показано, что характеристики исследованных структур в целом имеют вид, схожий с характеристиками МДП-структур, изготовленных на основе однородного Hg0,78Cd0,22Te.
Выполнен анализ перспективности применения УФ-излучения 222 нм эксимерных KrCl-ламп для обеззараживания воздуха и поверхностей. Предполагаемые основные преимущества излучения 222 нм, заключающиеся в возможности проводить обеззараживание в присутствии людей, и более высокая бактерицидная эффективность по сравнению с длиной волны 254 нм ртутных и амальгамных ламп низкого давления, проходят экспериментальную проверку. Исследования показывают противоречивые результаты о безопасности такого излучения для кожи и для глаз млекопитающих. Инактивация вирусов и простых бактериологических штаммов УФ-излучением 222 нм и 254 нм достигается при аналогичных УФ-дозах, однако для более крупных объектов (эндоспоры, грибы, гифы грибов) существенное преимущество имеет УФ-излучение 254 нм. Эффективность генерации УФ-излучения 222 нм в промышленных KrCl-лампах составляет 3–5 %, что существенно меньше, чем для ртутных и амаль-гамных ламп низкого давления 30–35 %.