Введение. Модульные здания в настоящее время имеют широкую географию применения. За счет своих преимуществ одной из областей их применения в Российской Федерации является строительство модульных зданий в труднодоступных регионах, которые зачастую являются сейсмическими. Широко востребованы модульные здания для промышленных объектов, например, для газо- и нефтеперерабатывающих заводов: здания диспетчерских и операторных, комплектные трансформаторные подстанции и здания распределительных устройств, газовые котельные, насосные и канализационные станции. Подобные сооружения требуют обоснования их надежности и соответствия нормам проектирования, в том числе и по сейсмике. При этом нормативная база как в целом по модульным зданиям, так в частности по их сейсмостойкости развита слабо.
Цель. Изучение вопроса применения модульных зданий в сейсмических регионах.
Методы. Для оценки возможности применения модульных зданий в сейсмических регионах выполнены изучение и анализ существующих экспериментальных исследований данных зданий и их узлов на сейсмические воздействия.
Результаты. Испытания полноразмерных модулей и зданий выполняются в России и за рубежом. Испытания по акселерограммам и по воздействиям, соответствующим нормам землетрясениям показывают довольно высокий уровень сейсмостойкости модульных зданий, вплоть до расчетной сейсмичности в 9 баллов. Исследования узловых соединений на циклические нагрузки демонстрируют довольно высокую способность узлов к рассеиванию энергии, что приводит к снижению реакции при сейсмическом воздействии. Логарифмические декременты колебаний в рассмотренных исследованиях лежат в пределах 0,2÷0,3, что близко к железобетонным сооружениям. При этом различные демпферы в узлах могут использоваться для увеличения сейсмостойкости модульного здания.
Обсуждение. Модульные здания имеют широкую географию строительства, в том числе в сейсмических регионах. Сертификационные и лабораторные испытания полноразмерных модулей и зданий показывают их довольно высокий уровень сейсмостойкости, вплоть до расчетной сейсмичности в 9 баллов. Также высокими диссипативными свойствами обладают внутримодульные узлы, при этом для повышения сейсмостойкости возможно применение различных демпферов.
Введение. В настоящее время актуальна задача оценки сейсмостойкости стальных каркасных зданий, учитывая различные факторы, влияющие на их поведение при землетрясениях.
Цель. Оценка влияния конструктивных особенностей стального каркасного гражданского здания на его сейсмостойкость при сейсмических воздействиях различного частотного состава и наличии в основании многолетнемерзлых грунтов.
Материалы и методы. Использовано численное моделирование для анализа сейсмостойкости стального каркасного здания. Исследование проведено с учетом варьируемых параметров: тип узловых соединений колонна-ригель, расположение ригелей в плане здания, тип основания (включая твердомерзлые и оттаявшие грунты), и преобладающая частота сейсмического воздействия.
Результаты и выводы. Установлено, что наименьшая уязвимость рассматриваемых зданий наблюдается при высокочастотных сейсмических воздействиях и при залегании твердомерзлых грунтов. Выявлено существенное влияние конструктивных особенностей каркасов (расположение несущих элементов и жесткость узловых соединений) на сейсмостойкость. Наиболее опасными для рассматриваемого типа зданий оказались средне- и низкочастотные сейсмические воздействия при наличии оттаявшего грунта под зданием. Результаты указывают на необходимость учета этих факторов при проектировании и оценке сейсмостойкости стальных каркасных зданий.