Архив статей журнала
Современные методы идентификации эффективных решений по распределенному хранению и распределенной обработке данных не предусматривают оптимизацию производительности вычислительных устройств, выделяемой каждому процессу, реализующему операции с данными, в зависимости от директивных сроков и бюджетов на их выполнение, задаваемых пользователями. В связи с этим разработаны две математические модели смешанного целочисленного линейного программирования, позволяющие оптимизировать распределенное хранение и обработку данных (в том числе оптимизировать производительность вычислительных устройств, выделяемую каждому процессу обработки), а также передачу данных между устройствами. Указанные модели реализуют идентификацию оптимальных решений при условии минимизации общей стоимости выполнения операций (с учетом ограничений на директивные сроки получения результатов и на общую производительность устройств), а также минимизации общей длительности реализации указанных операций (с учетом ограничений на бюджеты обработки данных и на производительность устройств). Полученные первоначально нелинейные модели линеаризованы путем введения дополнительных переменных. Разработанные модели реализованы программно с использованием пакета для решения задач дискретной оптимизации OR-Tools, позволяющего средствами его библиотеки и языка Phython осуществлять интерпретацию целевых функций и ограничений указанных моделей. Разработанное приложение позволило выполнить исследование процесса распределенного хранения, передачи и обработки данных при различных значениях параметров, его характеризующих. На основе анализа полученных результатов исследований сформулированы выводы, касающиеся зависимости общей длительности выполнения операций от значений директивных сроков при различных значениях количества выполняемых операций с данными, а также зависимости общей длительности обработки данных от задаваемых бюджетов и стоимости вычислительных операций и хранения данных